• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of the Material Removal Rate in Lapping Polycrystalline Diamond Compacts

Sowers, Jason Michael 2011 August 1900 (has links)
This study examines the lapping machining process used during the manufacturing of polycrystalline diamond compacts (PDCs). More specifically, it is aimed at improving the productivity of the process by developing a better understanding of the parameters that affect the material removal rate (MRR) and MRR uniformity of lapped PDC samples. Experiments that focused on several controllable lapping parameters were performed to determine to what extent they affected the process. It was determined that the MRR can be modeled with the Preston equation under certain ranges of pressure and speed. It was also found that using a hard and rigid sample holder produces higher MRRs than soft and flexible sample holders. The results have also shown that MRRs in excess of 300 micrometers per hour can be achieved while using 10 grams of diamond abrasive per PDC per hour of lapping. The productivity of the lapping process can also be improved by placing the maximum allowed PDC samples in a concentric circle on the edge of the sample holder. The MRR uniformity between samples lapped on the same sample holder was found to be dependent on the sample holder material. This thesis is composed of six chapters. The first chapter introduces the need for PDC's as extreme cutting tools, the manufacturing process of PDC's, and the lapping process. The second chapter discusses the motivation behind this research and the primary objectives that were established. The third chapter details the materials and the experimental procedure, and the fourth chapter presents the results. The fifth chapter discusses the results, and the sixth chapter presents conclusions and information on possible future work.
2

Experimental investigation and wear simulation of three-body abrasion

Doan, Yen The 08 January 2015 (has links) (PDF)
The wear process in three-body contact causes problems of abrasion such as volume loss and changes of geometry of the triboelements. The wear problem leads to increased failure and high costs for repairing or replacing equipment. To understand the nature of the wear behaviour and to predict the wear rate in advance, experimental investigation and numerical simulation of the wear process are required. In this work, the wear process is analysed and the influencing parameters governing the wear behaviour are investigated experimentally to develop a new wear model. Main influential factors are considered such as kinematics of abrasive particles, contact stiffness of the particle layer, friction characteristics, and wear factors. The experiments to study kinematics of particle layers are performed on a new observation tester. To define the contact stiffness of abrasive particles, experiments are conducted by the uniaxial spindle compression tester. Moreover, a tribometer test rig with applied load up to 200 N and velocity up to 1000 mm/s is used to investigate the friction characteristics and the wear behaviour of three-body tribosystem. Analyses of influential factors on the wear behaviour in dependency of predefined process parameter are carried out. Additionally, based on the results of the experimental investigations, approximation equations representing the relation of the influential factors and the process parameters are determined. A three-body wear model is build up to represent the wear behaviour by physical wear laws. Furthermore, these approximation equations and the relevant parameters obtained by experimental investigations are included in the Fleischer’s wear equation to simulate the wear process. With the coupled model the wear process of the sample can be simulated twodimensional over the sliding distance. It is possible to predict the wear depth and the wear intensity, which can be used to estimate the wear rate. Additionally, from the results of the wear simulation the worn surface and the local contact pressure in the contact region are determined which provide a deeper insight into the wear process. With this simulation the understanding of the wear behaviour can be improved which is important to solve wear problems.
3

Experimental investigation and wear simulation of three-body abrasion

Doan, Yen The 15 December 2014 (has links)
The wear process in three-body contact causes problems of abrasion such as volume loss and changes of geometry of the triboelements. The wear problem leads to increased failure and high costs for repairing or replacing equipment. To understand the nature of the wear behaviour and to predict the wear rate in advance, experimental investigation and numerical simulation of the wear process are required. In this work, the wear process is analysed and the influencing parameters governing the wear behaviour are investigated experimentally to develop a new wear model. Main influential factors are considered such as kinematics of abrasive particles, contact stiffness of the particle layer, friction characteristics, and wear factors. The experiments to study kinematics of particle layers are performed on a new observation tester. To define the contact stiffness of abrasive particles, experiments are conducted by the uniaxial spindle compression tester. Moreover, a tribometer test rig with applied load up to 200 N and velocity up to 1000 mm/s is used to investigate the friction characteristics and the wear behaviour of three-body tribosystem. Analyses of influential factors on the wear behaviour in dependency of predefined process parameter are carried out. Additionally, based on the results of the experimental investigations, approximation equations representing the relation of the influential factors and the process parameters are determined. A three-body wear model is build up to represent the wear behaviour by physical wear laws. Furthermore, these approximation equations and the relevant parameters obtained by experimental investigations are included in the Fleischer’s wear equation to simulate the wear process. With the coupled model the wear process of the sample can be simulated twodimensional over the sliding distance. It is possible to predict the wear depth and the wear intensity, which can be used to estimate the wear rate. Additionally, from the results of the wear simulation the worn surface and the local contact pressure in the contact region are determined which provide a deeper insight into the wear process. With this simulation the understanding of the wear behaviour can be improved which is important to solve wear problems.

Page generated in 0.0691 seconds