• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 19
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 186
  • 186
  • 186
  • 186
  • 118
  • 49
  • 43
  • 39
  • 29
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

A projector based hand-held display system. / 基於投影機的手提顯示系統 / Ji yu tou ying ji de shou ti xian shi xi tong

January 2009 (has links)
Leung, Man Chuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 81-88). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation and Objective --- p.1 / Chapter 1.2 --- Contribution --- p.3 / Chapter 1.3 --- Organization of the Thesis --- p.4 / Chapter 2 --- Background --- p.5 / Chapter 2.1 --- Introduction --- p.5 / Chapter 2.2 --- Static Projector and Screen Systems --- p.6 / Chapter 2.3 --- Dynamic Projector or Screen Systems --- p.9 / Chapter 2.3.1 --- Movable Projector Systems --- p.10 / Chapter 2.3.2 --- Dynamic Screen Systems --- p.11 / Chapter 2.4 --- Summary --- p.17 / Chapter 3 --- System Overview --- p.18 / Chapter 3.1 --- System Design --- p.18 / Chapter 3.2 --- Our Approach --- p.18 / Chapter 3.2.1 --- Offline Projector Camera Calibration --- p.20 / Chapter 3.2.2 --- Quadrangle Detection and Tracking --- p.20 / Chapter 3.2.3 --- Projection --- p.22 / Chapter 3.3 --- Extension --- p.22 / Chapter 4 --- Projector-Camera Pair Calibration --- p.23 / Chapter 4.1 --- Introduction --- p.23 / Chapter 4.2 --- Projective Geometry of a Projector --- p.25 / Chapter 4.3 --- Calibration Method --- p.27 / Chapter 5 --- Quadrangle Detection and Tracking --- p.31 / Chapter 5.1 --- Introduction --- p.31 / Chapter 5.2 --- Line Feature Extraction --- p.33 / Chapter 5.3 --- Automatic Quadrangle Detection --- p.33 / Chapter 5.4 --- Real-time Quadrangle Tracking --- p.36 / Chapter 5.4.1 --- State Dynamic Model --- p.39 / Chapter 5.4.2 --- Observation Model --- p.39 / Chapter 5.5 --- Tracking Lose Strategy --- p.41 / Chapter 5.5.1 --- Determination of Tracking Failure --- p.42 / Chapter 5.6 --- Recover from Tracking Failure --- p.43 / Chapter 6 --- Projection onto the Cardboard --- p.44 / Chapter 7 --- Implementation and Experiment Results --- p.47 / Chapter 7.1 --- Introduction --- p.47 / Chapter 7.2 --- Projector-Camera Pair Calibration --- p.49 / Chapter 7.3 --- Quadrangle Detection and Tracking --- p.51 / Chapter 7.3.1 --- Experiment 1 - Tracking precision and robustness against occlusion --- p.51 / Chapter 7.3.2 --- Experiment 2 - Robustness against dense clutter --- p.52 / Chapter 7.3.3 --- Experiment 3 - Tracking of a paper with printed content --- p.53 / Chapter 7.3.4 --- Experiment 4 - Moving camera --- p.53 / Chapter 7.3.5 --- Processing Time --- p.55 / Chapter 7.4 --- Projection Performance --- p.57 / Chapter 7.4.1 --- Projection Precision --- p.57 / Chapter 7.4.2 --- Projection Latency --- p.58 / Chapter 8 --- Limitations and Discussions --- p.61 / Chapter 8.1 --- Limitation on Projection Resolution --- p.61 / Chapter 8.2 --- Limitation on Depth of Field --- p.62 / Chapter 8.3 --- Tracking Stability and Processing Time --- p.62 / Chapter 8.4 --- Handling Projected Light --- p.63 / Chapter 8.5 --- Possible Extensions --- p.63 / Chapter 9 --- View Dependent Projection and Application --- p.65 / Chapter 9.1 --- View Dependent Projection --- p.65 / Chapter 9.2 --- Head Pose Tracking --- p.67 / Chapter 9.3 --- Application - Hand-held 3D Model Viewer --- p.68 / Chapter 9.3.1 --- Introduction --- p.68 / Chapter 9.3.2 --- Implementation Detail --- p.69 / Chapter 9.3.3 --- Experiment Results --- p.73 / Chapter 9.3.4 --- Discussions --- p.73 / Chapter 9.4 --- Summary --- p.75 / Chapter 10 --- Conclusions --- p.77 / A Pose Estimation of Cardboard --- p.79 / Bibliography --- p.81
112

Bending invariant correspondence matching on 3D models with feature descriptor.

January 2010 (has links)
Li, Sai Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 91-96). / Abstracts in English and Chinese. / Abstract --- p.2 / List of Figures --- p.6 / Acknowledgement --- p.10 / Chapter Chapter 1 --- Introduction --- p.11 / Chapter 1.1 --- Problem definition --- p.11 / Chapter 1.2. --- Proposed algorithm --- p.12 / Chapter 1.3. --- Main features --- p.14 / Chapter Chapter 2 --- Literature Review --- p.16 / Chapter 2.1 --- Local Feature Matching techniques --- p.16 / Chapter 2.2. --- Global Iterative alignment techniques --- p.19 / Chapter 2.3 --- Other Approaches --- p.20 / Chapter Chapter 3 --- Correspondence Matching --- p.21 / Chapter 3.1 --- Fundamental Techniques --- p.24 / Chapter 3.1.1 --- Geodesic Distance Approximation --- p.24 / Chapter 3.1.1.1 --- Dijkstra ´ةs algorithm --- p.25 / Chapter 3.1.1.2 --- Wavefront Propagation --- p.26 / Chapter 3.1.2 --- Farthest Point Sampling --- p.27 / Chapter 3.1.3 --- Curvature Estimation --- p.29 / Chapter 3.1.4 --- Radial Basis Function (RBF) --- p.32 / Chapter 3.1.5 --- Multi-dimensional Scaling (MDS) --- p.35 / Chapter 3.1.5.1 --- Classical MDS --- p.35 / Chapter 3.1.5.2 --- Fast MDS --- p.38 / Chapter 3.2 --- Matching Processes --- p.40 / Chapter 3.2.1 --- Posture Alignment --- p.42 / Chapter 3.2.1.1 --- Sign Flip Correction --- p.43 / Chapter 3.2.1.2 --- Input model Alignment --- p.49 / Chapter 3.2.2 --- Surface Fitting --- p.52 / Chapter 3.2.2.1 --- Optimizing Surface Fitness --- p.54 / Chapter 3.2.2.2 --- Optimizing Surface Smoothness --- p.56 / Chapter 3.2.3 --- Feature Matching Refinement --- p.59 / Chapter 3.2.3.1 --- Feature descriptor --- p.61 / Chapter 3.2.3.3 --- Feature Descriptor matching --- p.63 / Chapter Chapter 4 --- Experimental Result --- p.66 / Chapter 4.1 --- Result of the Fundamental Techniques --- p.66 / Chapter 4.1.1 --- Geodesic Distance Approximation --- p.67 / Chapter 4.1.2 --- Farthest Point Sampling (FPS) --- p.67 / Chapter 4.1.3 --- Radial Basis Function (RBF) --- p.69 / Chapter 4.1.4 --- Curvature Estimation --- p.70 / Chapter 4.1.5 --- Multi-Dimensional Scaling (MDS) --- p.71 / Chapter 4.2 --- Result of the Core Matching Processes --- p.73 / Chapter 4.2.1 --- Posture Alignment Step --- p.73 / Chapter 4.2.2 --- Surface Fitting Step --- p.78 / Chapter 4.2.3 --- Feature Matching Refinement --- p.82 / Chapter 4.2.4 --- Application of the proposed algorithm --- p.84 / Chapter 4.2.4.1 --- Design Automation in Garment Industry --- p.84 / Chapter 4.3 --- Analysis --- p.86 / Chapter 4.3.1 --- Performance --- p.86 / Chapter 4.3.2 --- Accuracy --- p.87 / Chapter 4.3.3 --- Approach Comparison --- p.88 / Chapter Chapter 5 --- Conclusion --- p.89 / Chapter 5.1 --- Strength and contributions --- p.89 / Chapter 5.2 --- Limitation and future works --- p.90 / References --- p.91
113

Test architecture design and optimization for three-dimensional system-on-chips.

January 2010 (has links)
Jiang, Li. / "October 2010." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 71-76). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.ii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Three Dimensional Integrated Circuit --- p.1 / Chapter 1.1.1 --- 3D ICs --- p.1 / Chapter 1.1.2 --- Manufacture --- p.3 / Chapter 1.2 --- Test Architecture Design and Optimization for SoCs --- p.4 / Chapter 1.2.1 --- Test Wrapper --- p.4 / Chapter 1.2.2 --- Test Access Mechanism --- p.6 / Chapter 1.2.3 --- Test Architecture Optimization and Test Scheduling --- p.7 / Chapter 1.3 --- Thesis Motivation and Organization --- p.9 / Chapter 2 --- On Test Time and Routing Cost --- p.12 / Chapter 2.1 --- Introduction --- p.12 / Chapter 2.2 --- Preliminaries and Motivation --- p.13 / Chapter 2.3 --- Problem Formulation --- p.17 / Chapter 2.3.1 --- Test Cost Model --- p.17 / Chapter 2.3.2 --- Routing Model --- p.17 / Chapter 2.3.3 --- Problem Definition --- p.19 / Chapter 2.4 --- Proposed Algorithm --- p.22 / Chapter 2.4.1 --- Outline of The Proposed Algorithm --- p.22 / Chapter 2.4.2 --- SA-Based Core Assignment --- p.24 / Chapter 2.4.3 --- Heuristic-Based TAM Width Allocation --- p.25 / Chapter 2.4.4 --- Fast routing Heuristic --- p.28 / Chapter 2.5 --- Experiments --- p.29 / Chapter 2.5.1 --- Experimental Setup --- p.29 / Chapter 2.5.2 --- Experimental Results --- p.31 / Chapter 2.6 --- Conclusion --- p.34 / Chapter 3 --- Pre-bond-Test-Pin Constrained Test Wire Sharing --- p.37 / Chapter 3.1 --- Introduction --- p.37 / Chapter 3.2 --- Preliminaries and Motivation --- p.38 / Chapter 3.2.1 --- Prior Work in SoC Testing --- p.38 / Chapter 3.2.2 --- Prior Work in Testing 3D ICs --- p.39 / Chapter 3.2.3 --- Test-Pin-Count Constraint in 3D IC Pre-Bond Testing --- p.40 / Chapter 3.2.4 --- Motivation --- p.41 / Chapter 3.3 --- Problem Formulation --- p.43 / Chapter 3.3.1 --- Test Architecture Design under Pre-Bond Test-Pin-Count Constraint --- p.44 / Chapter 3.3.2 --- Thermal-aware Test Scheduling for Post-Bond Test --- p.45 / Chapter 3.4 --- Layout-Driven Test Architecture Design and Optimization --- p.46 / Chapter 3.4.1 --- Scheme 1: TAM Wire Reuse with Fixed Test Architectures --- p.46 / Chapter 3.4.2 --- Scheme 2: TAM Wire Reuse with Flexible Pre-bond Test Architecture --- p.52 / Chapter 3.5 --- Thermal-Aware Test Scheduling for Post-Bond Test --- p.53 / Chapter 3.5.1 --- Thermal Cost Function --- p.54 / Chapter 3.5.2 --- Test Scheduling Algorithm --- p.55 / Chapter 3.6 --- Experimental Results --- p.56 / Chapter 3.6.1 --- Experimental Setup --- p.56 / Chapter 3.6.2 --- Results and Discussion --- p.58 / Chapter 3.7 --- Conclusion --- p.59 / Chapter 3.8 --- Acknowledgement --- p.60 / Chapter 4 --- Conclusion and Future Work --- p.69 / Bibliography --- p.70
114

Power supply noise analysis for 3D ICs using through-silicon-vias

Sane, Hemant 13 January 2010 (has links)
3D design is being recognized widely as the next BIG thing in system integration. However, design and analysis tools for 3D are still in infancy stage. Power supply noise analysis is one of the critical aspects of a design. Hence, the area of noise analysis for 3D designs is a key area for future development. The following research presents a new parasitic RLC modeling technique for 3D chips containing TSVs as well as a novel optimization algorithm for power-ground network of a 3D chip with the aim of minimizing noise in the network. The following work also looks into an existing commercial IR drop analysis tool and presents a way to modify it with the aim of handling 3D designs containing TSVs.
115

Effects of retinal disparity depth cues on cognitive workload in 3-D displays /

Gooding, Linda Wells, January 1991 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 174-179). Also available via the Internet
116

Advanced wavelet image and video coding strategies for multimedia communications

Vass, Jozsef January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 202-221). Also available on the Internet.
117

A 2D visual language for rapid 3D scene design : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the University of Canterbury /

Adams, Nathan January 2009 (has links)
Thesis (M. Sc.)--University of Canterbury, 2009. / Typescript (photocopy). Includes bibliographical references (leaves 82-93). Also available via the World Wide Web.
118

An interactive X Window system environment for demonstrating three-dimensional transformation techniques

Wilkinson, James E. January 1995 (has links)
The purpose of the X-Form package is for use in the classroom as an instructional aid for teaching the algorithms and data used to represent, transform, and display objects in three-dimensional space. The program provides various areas containing graphic and textual representations of the data structures used in the creation and transformation of a three-dimensional object. Another area, containing the menu items, serves as an interface to the available demonstration items. These items include various object and viewing parameters which can be input by the user. The user then sees the result of the entered data, including animated graphics and changes in data structures. The graphic areas show the object at various stages of development, so that the user can understand the progression of the required manipulations. The textual representations are also designed to assist the user in understanding how useful information is derived from entered data. Through testing and statistical analysis, XForm has proven to be an effective tool for instruction of three-dimensional graphics. / Department of Computer Science
119

On reliably inferring differential structure from three-dimensional images

Sander, Peter T. January 1988 (has links)
Early image understanding seeks to derive analytic representations from image data. This thesis presents steps towards this goal for three-dimensional imagery by focusing on the inference of trace points (points belonging to surfaces), and the estimation of associated differential structure given by the principal curvature and direction fields over smooth surfaces. Computation of these fields is posed as the determination of a cross section through the bundle of curvature frames over the estimated trace. Algorithm robustness and the stability of results are essential for analysis of real images; to this end, I present a functional minimization algorithm where the principal direction cross section meets appropriate criteria for a minimum, and develop an implementation as an iterative constraint satisfaction procedure based on local surface smoothness properties. For shape description and eventual object recognition, the exact recovery of local structure everywhere is less important than the identification of singular surface points which prove stable to noise and small surface perturbations, in particular, the umbilic points of surfaces. Such points are computed naturally from the estimated local surface structure embodied in the principal direction cross section of the frame bundle. Examples of the recovery of local structure are presented for synthetic images degraded by noise and for clinical magnetic resonance images.
120

GardenScapes : a harmonious approach to 3D art /

Tate, Charmie. January 2007 (has links)
Thesis (M.F.A.)--Rochester Institute of Technology, 2007. / Typescript. Includes bibliographical references (leaves 20-26).

Page generated in 0.1628 seconds