Spelling suggestions: "subject:"threedimensional tolerancia"" "subject:"threedimensional tolerance""
1 |
Tolérancement flexible d'assemblages de grandes structures aéronautiques / Flexible tolerancing of large aeronautical structures assembliesStricher, Alain 08 February 2013 (has links)
Comme son nom l'indique, le tolérancement flexible a pour objectif de tenir compte de la souplesse des pièces dans un processus de tolérancement. Il permet d'évaluer les défauts géométriques admissibles par des critères aussi bien géométriques que mécaniques. Ces travaux abordent en premier lieu l'élaboration de modèles adéquats permettant de prédire le comportement mécanique d'un assemblage de grandes pièces relativement souples lorsqu'elles sont sujettes à des défauts géométriques issues du procédé de fabrication. Une méthode a alors été proposée pour y implémenter des variations géométriques aléatoires réalistes vis-à-vis de ces hypothétiques défauts géométriques. Pour simuler les opérations d'assemblage, le phénomène de contact unilatéral et les variations de rigidité dues aux variabilités géométriques ont été prises en compte. En fonction de ces hypothèses, les stratégies d'analyse de tolérance avec Monte Carlo ou la méthode des coefficients d'influence ont été comparées afin de choisir celle minimisant les coûts de calcul tout en conservant la justesse des résultats. Finalement, ces travaux s'achèvent sur une étude de cas industriel : un treillis supportant des équipements sous le plancher du fuselage d'un Airbus A350. / As indicated by its name, the purpose of flexible tolerancing is to take into account the flexibility of the parts in a tolerancing process. It allows to evaluate the permissibles geometrical defects by both geometrical and mechanical criteria. These works deal first with the elaboration of a model able to predict the mechanical behaviour of an assembly of larges and flexibles parts which are suject to geometrical defects induced by their manufacturing process. A method has thus been suggested in order to implement geometrical variations which are realistic according to these hypothetical geometrical defects. To simulate the assembling process, the unilateral contact phenomenon and the stiffness variations induced by the geometrical variability have been taken into account. Depending on these assumptions, some strategies of tolerance analysis with Monte Carlo or the method of influence coefficients have been compared in order to choose the one minimizing the computational costs while maintaining the accuracy of the results. Finally, these works are completed with an industrial study case: a truss supporting equipments and hanging under the fuselage floor of an Airbus A350.
|
2 |
Optimisation du calcul des dispersions angulaires tridimensionnelles / Optimization of the three-dimensional angular dispersions calculationMezghani, Aïda 05 November 2010 (has links)
Ce travail de recherche traite un problème qui joue un rôle très important pour le succès desprogrammes de fabrication : le tolérancement tridimensionnel, essentiel pour définir la géométried'une pièce mécanique assurant sa meilleure fonctionnalité dans un assemblage avec uneprécision optimale.Une méthode des chaînes de cotes angulaires tridimensionnelles a été développée. Cette méthodepermet d’une part l’optimisation du calcul des dispersions angulaires tridimensionnelles etd’autre part de valider la gamme de fabrication par la vérification du respect des tolérancesimposées par le bureau d’études en tenant compte des précisions des procédés utilisés.Cette étude est basée sur l’analyse de deux fonctions paramétrées qui sont étudiées pourdéterminer le défaut fabriqué : le défaut angulaire et la longueur projetée. Le défaut angulairereprésente le cumul des défauts angulaires générés par le processus de fabrication de la pièce. Lesdéfauts angulaires sont déterminés en fonction de la précision des machines outils. La longueurprojetée de la surface tolérancée est une caractéristique qui dépend uniquement de la forme de lasurface.Ensuite, à partir de ces deux fonctions paramétrées, le défaut fabriqué est déterminé puiscomparé avec la condition fonctionnelle afin de vérifier si la gamme choisie permet en fin duprocessus de fabrication de donner une pièce conforme. / To verify the capacity of a manufacturing process to make the corresponding parts it is necessaryto simulate the defects that it generates and to analyze the correspondence of produced parts withthe functional tolerances. In order to check the capability of a manufacturing process to carry outsuitable parts, it is necessary to analyze each functional tolerance.The main objective of our work is to define a methodology of tolerancing analysis. Thedeveloped method allows to determine the manufacturing tolerances in the case of angular chainsof dimensions and to check its correspondence with the functional tolerances.The objective of this work is to analyze two parameterized functions: the angular defect and theprojected length of the toleranced surface. The angular defect represents the angular defectgenerated by the manufacturing process. It is determined according to the machine toolsprecision. We consider only the geometrical defects, making the assumption that the form defectsare negligible. The projected length of toleranced surface is a characteristic which depends onlyon the form of surface.The manufactured defect is determined from these two parameterized functions. Then it will becompared with the functional condition in order to check if the selected machining range allows,at end of the manufacturing process, to give a suitable part.
|
3 |
Aide au tolérancement tridimensionnel : modèle des domaines / Three-dimensional tolerancing assistance : domains modelMansuy, Mathieu 25 June 2012 (has links)
Face à la demande de plus en plus exigeante en terme de qualité et de coût de fabrication des produits manufacturés, la qualification et quantification optimal des défauts acceptables est primordial. Le tolérancement est le moyen de communication permettant de définir les variations géométriques autorisé entre les différents corps de métier intervenant au cours du cycle de fabrication du produit. Un tolérancement optimal est le juste compromis entre coût de fabrication et qualité du produit final. Le tolérancement repose sur 3 problématiques majeures: la spécification (normalisation d'un langage complet et univoque), la synthèse et l'analyse de tolérances. Nous proposons dans ce document de nouvelles méthodes d'analyse et de synthèse du tolérancement tridimensionnel. Ces méthodes se basent sur une modélisation de la géométrie à l'aide de l'outil domaine jeux et écarts développé au laboratoire. La première étape consiste à déterminer les différentes topologies composant un mécanisme tridimensionnel. Pour chacune de ces topologies est définie une méthode de résolution des problématiques de tolérancement. Au pire des cas, les conditions de respect des exigences fonctionnelles se traduisent par des conditions d'existence et d'inclusions sur les domaines. Ces équations de domaines peuvent ensuite être traduites sous forme de système d'inéquations scalaires. L'analyse statistique s'appuie sur des tirages de type Monte-Carlo. Les variables aléatoires sont les composantes de petits déplacements des torseur écarts défini à l'intérieur de leur zone de tolérance (modélisée par un domaine écarts) et les dimensions géométriques fixant l'étendue des jeux (taille du domaine jeux associé). A l'issue des simulations statistiques, il est possible d'estimer le risque de non-qualité et les jeux résiduels en fonction du tolérancement défini. Le développement d'une nouvelle représentation des domaines jeux et écarts plus adapté, permet de simplifier les calculs relatifs aux problématiques de tolérancement. Le traitement local de chaque topologie élémentaire de mécanisme permet d'effectuer le traitement global des mécanismes tridimensionnels complexes avec prise en compte des jeux. / As far as the demand in quality and cost of manufacturing increase, the optimal qualification and quantification of acceptable defects is essential. Tolerancing is the means of communication between all actors of manufacturing. An optimal tolerancing is the right compromise between manufacturing cost and quality of the final product. Tolerancing is based on three major issues: The specification (standardization of a complete and unequivocal language), synthesis and analysis of the tolerancing. We suggest in this thesis some new analysis and synthesis of the three-dimensional tolerancing. These methods are based on a geometric model define by the deviations and clearances domains developed on the laboratory. The first step consists in determining the elementary topology that composes a three-dimensional mechanism. For each kind of these topologies one resolution method is defined. In worst case, the condition of functional requirement respect is traduced by existence and inclusions conditions on the domains. Then these domains equations can be translated in inequalities system of scalar. The statistical analysis uses the Monte-Carlo simulation. The random variables are the small displacements components of the deviation torsor which is defined inside its tolerance area (model by a deviations domain) and the geometrics dimensions which set the extent of clearance (size of the clearance domain). Thanks to statistical simulation, it is possible to estimate the non-quality rate in regards to the defined tolerancing. The development of a new representation of clearances and deviations domains most suitable, allows us to simplify the calculation for tolerancing problems. The local treatment of elementary topology makes enables the global treatment of complex three-dimensional mechanisms with take into account of clearances.
|
Page generated in 0.1233 seconds