• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 23
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Les prostanoïdes contrôlent la circulation placentaire : implication dans la prééclampsie

Hausermann, Leslie 06 1900 (has links)
Au cours de la grossesse, une perfusion placentaire adéquate est indispensable au bon développement du fœtus. Dans certaines maladies comme la prééclampsie, celle-ci est altérée, compromettant ainsi la vie du fœtus, mais aussi celle de sa mère. Le retrait du placenta mène à la disparition des symptômes de la prééclampsie, suggérant un rôle central de ce dernier dans la maladie. Le placenta étant dépourvu d’innervation autonome, le tonus vasculaire placentaire doit être sous le contrôle de facteurs humoraux et tissulaires. Les vaisseaux placentaires sont très réactifs aux prostanoïdes. Le rapport thromboxane A2 (TXA2)/prostacycline (PGI2) est fortement augmenté dans les placentas de grossesses avec prééclampsie. De plus, le taux d’isoprostane, marqueur du stress oxydatif, est accru dans les placentas de femmes avec prééclampsie. Finalement, la prééclampsie s’accompagne d’un stress oxydatif placentaire marqué. Les espèces réactives de l’oxygène sont connues d’une part, pour oxyder l’acide arachidonique (AA), formant ainsi des isoprostanes et d’autre part, pour augmenter la production de TXA2 dans différents tissus, suite à l’activation des cyclooxygénases (COXs). Nous proposons que : 1. les prostanoïdes sont parmi les molécules endogènes qui contrôlent le tonus vasculaire placentaire. 2. la maladie modifie la réponse aux isoprostanes dans les vaisseaux placentaires. 3. l’induction d’un stress oxydatif placentaire entraîne une réponse vasoactive par activation de la voie du métabolisme de l’AA. Nous avons tout d’abord montré, dans des placentas obtenus de grossesses normotensives, que l’U-46619, un mimétique de la TXA2, de même que l’isoprostane, 8-iso-prostaglandine E2 (8-isoPGE2), ont augmenté fortement la pression de perfusion dans les cotylédons perfusés in vitro et la tension dans les anneaux d’artères chorioniques suspendus dans des bains à organe isolé. En revanche, dans les artères chorioniques de placentas obtenus de grossesses avec prééclampsie, ces réponses étaient modifiées puisque la réponse maximale à l’U-46619 était augmentée et celle à la 8-isoPGE2 diminuée. D’autre part, nous avons montré que les réponses maximales aux deux prostanoïdes étaient augmentées dans les vaisseaux placentaires de grossesse normale ou avec prééclampsie issus d’une délivrance prématurée par rapport à ceux d’une délivrance à terme. Ceci suggère une évolution de la réactivité des artères placentaires au cours du 3e trimestre de grossesse. En outre, les vaisseaux placentaires ont répondu aux prostanoïdes de façon semblable qu’ils aient été issus d’un accouchement vaginal ou d’une césarienne élective. Ceci indique que les prostanoïdes placentaires n’interviennent pas dans le processus de délivrance. D’un autre côté, l’utilisation de bloqueurs spécifiques des récepteurs TP à la TXA2, le SQ29,548 et l’ICI192,605, et des récepteurs EP à la prostaglandine E2, l’AH6809, nous ont permis de mettre en évidence le fait que l’U-46619 et la 8-isoPGE2 pouvaient agir de façon non-sélective sur l’un ou l’autre des récepteurs. Ces résultats supportent donc nos 2 premières hypothèses : les prostanoïdes font partie des molécules endogènes qui peuvent contrôler le tonus vasculaire placentaire et la prééclampsie modifie la réponse aux isoprostanes dans les artères chorioniques d’une manière compatible avec l’augmentation de la production de ces substances qui elle, est probablement le résultat du stress oxydatif. En revanche, en ce qui concerne les substances capables de jouer la contrepartie vasodilatatrice, l’utilisation d’un inhibiteur des synthases de monoxyde d’azote, le L-NAME, et celle d’inhibiteurs des COXs, l’ibuprofène, l’indométacine et le N-2PIA, ne nous a pas permis de mettre en évidence un quelconque rôle du monoxyde d’azote ou des prostanoïdes vasodilatatrices à ce niveau. Finalement, nous avons montré que l’induction d’un stress oxydatif dans les cotylédons perfusés in vitro et les artères chorioniques entraînait une vasoconstriction marquée. Celle-ci semble résulter de l’action des prostanoïdes puisqu’un blocage des récepteurs TP ou des COXs diminuait significativement la réponse maximale au peroxyde d’hydrogène. Les prostanoïdes impliquées dans la réponse au stress oxydatif proviendraient essentiellement d’une activation des COXs puisque l’étude ne nous permet pas de conclure à une quelconque implication des isoprostanes dans cette réponse. Ces observations confirment donc notre hypothèse que, dans le placenta, le stress oxydatif possède des propriétés vasoactives par activation du métabolisme de l’AA. En résumé, les résultats obtenus dans les placentas de grossesses normotensives et avec prééclampsie suggèrent que les prostanoïdes sont des molécules d’importance dans la régulation du tonus vasculaire placentaire. Le fait que la prééclampsie modifie la réponse aux prostanoïdes pourrait expliquer pourquoi la perfusion placentaire est altérée chez ces patientes. En outre, il apparaît évident qu’il existe un lien étroit entre le stress oxydatif et la voie de synthèse des prostanoïdes placentaires. Cependant d’autres études sont nécessaires pour mieux comprendre la nature de ce lien, qui pourrait, d’une certaine façon, jouer un rôle important dans le développement de la prééclampsie. / Throughout pregnancy, appropriate placental perfusion is essential for the fœtus to grow properly. In disease such as preeclampsia, placental perfusion is impaired, compromising the fœtus and mother’s lives. Placenta delivery leads to a complete disappearance of the clinical symptoms of preeclampsia. This suggests that the placenta plays a central role in the disease. Placenta being devoid of autonomous innervation, placental vascular tone needs to be under the control of humoral and tissular factors; placental arteries are very reactive to prostanoids. The thromboxane A2 (TXA2)/prostacyclin (PGI2) ratio is increased in placenta from preeclamptic women. Furthermore, in placenta from preeclamptic pregnancies, isoprostane rate is increased, which is a marker of oxidative stress. Finally, preeclampsia is characterised by an important oxidative stress. Reactive oxygen species are known to form isoprostane through the oxidation of arachidonic acid (AA) and to increase TXA2 production in various tissues following an activation of the cyclooxygenases (COXs). We postulate that: 1. prostanoids are among the endogenous molecules that control placental vascular tone. 2. preeclampsia alters responses to isoprostanes in placental vessels. 3. induced placental oxidative stress leads to vasoactive responses through the activation of the AA metabolism. We first showed in placentas from normotensive pregnancies that the TXA2 mimetic U-46619 and the isoprostane 8-isoprostaglandin E2 (8-isoPGE2) markedly increased perfusion pressure in in vitro perfused cotyledons, as well as tension in isolated chorionic arteries. However, in placentas obtained from women with preeclampsia, those responses were altered in chorionic arteries. Indeed, maximal response to U-46619 was raised by preeclampsia, while the one to 8-isoPGE2 was decreased. We then showed that preterm delivery increased maximal responses to both prostanoids compared to term delivery. This observation suggests that placental arteries reactivity evolves along the 3rd trimester of pregnancy. Nevertheless, it appeared that delivery mode had no effect on vascular responses to prostanoids, suggesting that placental prostanoids are not involved in the delivery process. The use of specific blockers of the TXA2 TP receptors, SQ29,548 and ICI192,605, and of the prostaglandin E2 EP receptors, AH6809, revealed that U-46619 and 8-isoPGE2 could mediate their effects by acting on both receptors in a non-selective manner. Therefore, these results support our two first postulates: prostanoids could be the endogenous substances controlling the placental vascular tone and preeclampsia alters responses to isoprostanes in chorionic artery rings in a way compatible with the increased production of these substances possibly through the associated oxidative stress. Moreover, we were unable to identify any vasodilator substances capable of counteracting the effects of vasoconstrictors in the placental circulation. Indeed, blocker of nitric oxide synthases, L-NAME, as well as blockers of COXs, ibuprofen, indometacin and N-2PIA, did not reveal any effect of nitric oxide and vasodilator prostanoids at this level. Finally, we showed that induction of oxidative stress in in vitro perfused cotyledons and in isolated chorionic artery rings led to marked vasoconstriction. This would result from the action of prostanoids since a blockade of TP receptors or COXs significantly decreased maximal response to hydrogen peroxide. Prostanoids involved in this response would essentially come from COX activation. Indeed, the present results did not show any concrete involvement of isoprostane substances in the response to oxidative stress. Consequently, these observations confirm our hypothesis that, in the placenta, oxidative stress presents some vasoactive properties through the activation of the AA metabolism. In summary, results obtained in placentas from normotensive and preeclamptic pregnancies suggest that prostanoids are important in the regulation of the placental vascular tone. Furthermore, responses to prostanoids in chorionic arteries are altered by preeclampsia, which could explain why the placental perfusion is impaired in the disease. Moreover, it seems clear that there is a close relationship between oxidative stress and synthesis of placental prostanoids. However, more investigations are needed to better understand the nature of this relationship, which, in some way, could play an important role in the development of preeclampsia.
52

THE ROLE OF MYOGENIC CONSTRICTION IN HYPERTENSION AND CHRONIC KIDNEY DISEASE / MYOGENIC CONSTRICTION: ITS REGULATION, ROLE IN HYPERTENSIVE KIDNEY DISEASE, AND ASSOCIATION WITH URINARY UROMODULIN

Nademi, Samera January 2022 (has links)
Chronic kidney disease (CKD) is defined as glomerular filtration rate (GFR) less than 60 mL/min/1.73 m2 for 3 months and is characterized by progressive loss of renal function. The second leading cause of CKD is hypertension. More than half of CKD patients also suffer from hypertension. Arteries and arterioles adjust to the fluctuations in the systematic blood pressure through a mechanism called autoregulation. In the kidneys, autoregulation protects the delicate glomeruli capillaries from high blood pressure and occurs through myogenic constriction (MC). MC refers to contraction of arterioles in response to an increase in the blood pressure. Chronically hypertensive individuals and animal models have an enhanced MC, leading to minimal renal injury despite their elevated blood pressure. Experimental and clinical evidence point to a role for the MC in the pathogenesis of the CKD, however, the mechanism through which preglomerular arterial MC contributes to CKD has not been fully elucidated. This thesis showed that augmented MC in chronically hypertensive animal models was due to increased thromboxane A2 prostaglandin that was not released from the endothelium (Chapter 2). Nevertheless, inhibiting MC while also reducing the blood pressure prevented salt-induced renal injury even though the blood pressure was still not normalized compared to the normotensive controls (Chapter 3). The resulting improvement in renal structure and function could be attributed to the reduction in the blood pressure, albumin, and uromodulin (UMOD) excretion (Chapter 3). UMOD is a kidney-specific glycoprotein that, based on a genome-wide association study have the strongest association to CKD (Chapter 3). Comparing two CKD hypertensive animal models further revealed that CKD progression was independent of the blood pressure and strongly associated with UMOD excretion levels (Chapter 4). Collectively, the data discussed in this thesis demonstrates potential therapeutic targets in CKD hypertensive animal models. / Dissertation / Doctor of Philosophy (PhD)
53

Endothelium-dependent vasomotor responses of hypertensive and type 2 diabetic rats: effects of sex, ageing, and therapeutic interventions

Graham, Drew January 2009 (has links)
Impaired endothelial vasomotor function is a hallmark of many chronic disease states, including essential hypertension and type 2 diabetes mellitus. Loss of the homeostatic role of the endothelium in large conduit arteries can contribute to the pathogenesis of cardiovascular conditions in these vessels (e.g. stroke, atherosclerosis). A fundamental understanding of mechanisms controlling endothelial function in hypertension and type 2 diabetes mellitus is required for appropriate clinical strategies targeting the cardiovascular conditions associated with these diseases. The vast majority of basic science studies examining endothelial function in animal models of hypertension and type 2 diabetes have been conducted in males. Studying endothelial function in females is imperative for determining potential sex-specific mechanisms of dysfunction and thus appropriate therapeutic strategies. Thus the global purpose of this thesis is to identify and characterize the pathways controlling impaired vasomotor function in female animal models of two chronic disease states: hypertension and type 2 diabetes mellitus. Chapters 2 and 3 of this thesis examine sex differences in endothelium-dependent vasorelaxation (EDR) and vasocontraction (EDC) of aortic segments isolated from male and female spontaneously hypertensive rats (SHR), a model of essential hypertension, as the animals age between 16 and 30 wk old. All endothelial vasomotor data presented in the Abstract are peak responses to 10⁻⁵ M acetylcholine. Endothelial vasomotor impairment is represented by lower EDR or by higher EDC. These present data confirmed well-established findings from the literature that 16 wk old male SHR exhibit endothelial vasomotor impairments (EDR: 77±4 %; EDC: 76±7 %) compared to normotensive Wistar-Kyoto (WKY; EDR: 89±6 %; EDC: 59±8 %; p<0.05) controls, and that this impairment worsens with ageing in 30 wk male SHR (EDR: 63±2 %; EDC: 91±3 %; p<0.05). The observation that EDR was reduced in 30 wk female SHR (EDR: 76±4 %) compared to 16 wk counterparts (EDR: 101±2 %; p<0.05), however, was novel and interesting, as there were previously no reports of vasomotor responses in female SHR older than 19 wk. Moreover, the blunted EDR response of 30 wk female SHR approached the level of impairment exhibited by 30 wk male SHR (but was still slightly greater in females; p<0.05). The limited sex difference of the EDR within 30 wk SHR (males –13 % vs. females; p<0.05) contrasted that of 16 wk SHR (males –24 % vs. females; p<0.05), when the robust and unimpaired relaxation displayed by females was much greater than the significantly blunted response of males. Interestingly, endothelium-dependent contractions in quiescent rings were moderate and similar between 16 wk (EDC: 50±4 %) and 30 wk female SHR (EDC: 59±7 %; p=N/S) as compared to the greater contractions of males that were exacerbated with ageing (see above; p<0.05 both sex and ageing comparison). A major role has been established for the cyclooxygenase (COX)-1-thromboxane A₂/prostaglandin (TP) receptor pathway in the impaired endothelial vasomotor function of male SHR. Indeed, a similar mechanism appears to be responsible for the dysfunction observed in 30 wk female SHR in this thesis since robust endothelial function was restored in these animals with both antagonism of TP receptor (EDR: 111±2 %; EDC: 7±2 %; p<0.05) and preferential inhibition of COX-1 (EDR: 112±3 %; EDC: –5±3 %; p<0.05). In contrast, preferential inhibition of COX-2 only partially tempered endothelial impairments of 30 wk female SHR (EDR: 99±5 %; EDC: 27±3 %; p<0.05), suggesting that, similar to ageing male SHR, this isoform makes at most a secondary contribution to the dysfunction in 30 wk female SHR. Collectively, these data indicate that ageing female SHR exhibit a mechanism of endothelial impairment that is similar to that of male SHR and that is largely COX-1- and TP receptor-dependent. Chapter 4 examines the ability of chronic dietary administration of the n-3 polyunsaturated fatty acid (PUFA), docosahexaenoic acid (DHA, 22:6 n-3), to ameliorate endothelial vasomotor function in adult male SHR with established hypertension. The impaired endothelial function of aortic segments isolated from adult male SHR (EDR: 48±6 %) was not improved following 10–12 wk of DHA feeding (EDR: 45±5 %; p=N/S). This finding was unexpected since it has been shown in the literature that feeding other n-3 PUFAs improves vasomotor responses in younger SHR, in which hypertension and its associated consequences are still developing. This is the first report of the effects of n-3 PUFA on endothelial vasomotor responses in adult SHR with established hypertension. These data suggest that dietary DHA do not improve vasomotor function in adult SHR. Chapter 5 examines α₁ adrenergic contraction and EDR of aortic segments isolated from 14 wk old female Zucker diabetic fatty rats (ZDF), a genetic model of high fat diet-induced obesity and type 2 diabetes, and lean non-diabetic female Zucker Lean rats. Additionally, some ZDF received an 8 wk administration of anti-diabetic metformin drug therapy, aerobic exercise training, or a combination of the two. Maximal α₁ adrenergic contractions were over 2-fold higher in high fat-fed ZDF (1.69±0.16 g) compared to Lean (0.71±0.13 g; p<0.05). This elevation in ZDF was abolished by exercise training alone (1.02±0.17 g; p<0.05) but was not altered by metformin (1.56±0.19 g; p=N/S). In contrast to the severely impaired endothelial vasomotor function reported in male ZDF in the literature, robust EDR was observed in female ZDF (72±7 %) that was similar to Lean (75±6 %; p=N/S) and that was unaltered by exercise training (76±5 %; p=N/S) or metformin (76±6 %; p=N/S). These results indicate that enhanced α₁ adrenergic contraction is a mechanism of altered vasomotor function in female type 2 diabetic ZDF rats and that it could possibly be addressed by a chronic exercise training intervention. The main novelty of the thesis is the extension of the current understanding of endothelial vasomotor function to hypertensive and type 2 diabetic females. The knowledge gained from examining mechanisms involved in endothelial impairments in ageing hypertensive females and from testing the therapeutic potential of currently used anti-diabetic interventions in the type 2 diabetic female vasculature has interesting potential application. This basic scientific information could help direct clinical therapeutic strategies to target population-specific mechanisms of dysfunction. Understanding female sex-specific endothelial behaviour in patient populations is important for describing cardiovascular complications, defining mechanisms, and applying appropriate therapeutic targets. Findings from this thesis indicate a sex-dependence of the total divergence of endothelial function (e.g. female type 2 diabetic rats vs. male counterparts in the literature) and of the interaction of disease variables (e.g. age) and endothelial vasomotor responses.
54

Endothelium-dependent vasomotor responses of hypertensive and type 2 diabetic rats: effects of sex, ageing, and therapeutic interventions

Graham, Drew January 2009 (has links)
Impaired endothelial vasomotor function is a hallmark of many chronic disease states, including essential hypertension and type 2 diabetes mellitus. Loss of the homeostatic role of the endothelium in large conduit arteries can contribute to the pathogenesis of cardiovascular conditions in these vessels (e.g. stroke, atherosclerosis). A fundamental understanding of mechanisms controlling endothelial function in hypertension and type 2 diabetes mellitus is required for appropriate clinical strategies targeting the cardiovascular conditions associated with these diseases. The vast majority of basic science studies examining endothelial function in animal models of hypertension and type 2 diabetes have been conducted in males. Studying endothelial function in females is imperative for determining potential sex-specific mechanisms of dysfunction and thus appropriate therapeutic strategies. Thus the global purpose of this thesis is to identify and characterize the pathways controlling impaired vasomotor function in female animal models of two chronic disease states: hypertension and type 2 diabetes mellitus. Chapters 2 and 3 of this thesis examine sex differences in endothelium-dependent vasorelaxation (EDR) and vasocontraction (EDC) of aortic segments isolated from male and female spontaneously hypertensive rats (SHR), a model of essential hypertension, as the animals age between 16 and 30 wk old. All endothelial vasomotor data presented in the Abstract are peak responses to 10⁻⁵ M acetylcholine. Endothelial vasomotor impairment is represented by lower EDR or by higher EDC. These present data confirmed well-established findings from the literature that 16 wk old male SHR exhibit endothelial vasomotor impairments (EDR: 77±4 %; EDC: 76±7 %) compared to normotensive Wistar-Kyoto (WKY; EDR: 89±6 %; EDC: 59±8 %; p<0.05) controls, and that this impairment worsens with ageing in 30 wk male SHR (EDR: 63±2 %; EDC: 91±3 %; p<0.05). The observation that EDR was reduced in 30 wk female SHR (EDR: 76±4 %) compared to 16 wk counterparts (EDR: 101±2 %; p<0.05), however, was novel and interesting, as there were previously no reports of vasomotor responses in female SHR older than 19 wk. Moreover, the blunted EDR response of 30 wk female SHR approached the level of impairment exhibited by 30 wk male SHR (but was still slightly greater in females; p<0.05). The limited sex difference of the EDR within 30 wk SHR (males –13 % vs. females; p<0.05) contrasted that of 16 wk SHR (males –24 % vs. females; p<0.05), when the robust and unimpaired relaxation displayed by females was much greater than the significantly blunted response of males. Interestingly, endothelium-dependent contractions in quiescent rings were moderate and similar between 16 wk (EDC: 50±4 %) and 30 wk female SHR (EDC: 59±7 %; p=N/S) as compared to the greater contractions of males that were exacerbated with ageing (see above; p<0.05 both sex and ageing comparison). A major role has been established for the cyclooxygenase (COX)-1-thromboxane A₂/prostaglandin (TP) receptor pathway in the impaired endothelial vasomotor function of male SHR. Indeed, a similar mechanism appears to be responsible for the dysfunction observed in 30 wk female SHR in this thesis since robust endothelial function was restored in these animals with both antagonism of TP receptor (EDR: 111±2 %; EDC: 7±2 %; p<0.05) and preferential inhibition of COX-1 (EDR: 112±3 %; EDC: –5±3 %; p<0.05). In contrast, preferential inhibition of COX-2 only partially tempered endothelial impairments of 30 wk female SHR (EDR: 99±5 %; EDC: 27±3 %; p<0.05), suggesting that, similar to ageing male SHR, this isoform makes at most a secondary contribution to the dysfunction in 30 wk female SHR. Collectively, these data indicate that ageing female SHR exhibit a mechanism of endothelial impairment that is similar to that of male SHR and that is largely COX-1- and TP receptor-dependent. Chapter 4 examines the ability of chronic dietary administration of the n-3 polyunsaturated fatty acid (PUFA), docosahexaenoic acid (DHA, 22:6 n-3), to ameliorate endothelial vasomotor function in adult male SHR with established hypertension. The impaired endothelial function of aortic segments isolated from adult male SHR (EDR: 48±6 %) was not improved following 10–12 wk of DHA feeding (EDR: 45±5 %; p=N/S). This finding was unexpected since it has been shown in the literature that feeding other n-3 PUFAs improves vasomotor responses in younger SHR, in which hypertension and its associated consequences are still developing. This is the first report of the effects of n-3 PUFA on endothelial vasomotor responses in adult SHR with established hypertension. These data suggest that dietary DHA do not improve vasomotor function in adult SHR. Chapter 5 examines α₁ adrenergic contraction and EDR of aortic segments isolated from 14 wk old female Zucker diabetic fatty rats (ZDF), a genetic model of high fat diet-induced obesity and type 2 diabetes, and lean non-diabetic female Zucker Lean rats. Additionally, some ZDF received an 8 wk administration of anti-diabetic metformin drug therapy, aerobic exercise training, or a combination of the two. Maximal α₁ adrenergic contractions were over 2-fold higher in high fat-fed ZDF (1.69±0.16 g) compared to Lean (0.71±0.13 g; p<0.05). This elevation in ZDF was abolished by exercise training alone (1.02±0.17 g; p<0.05) but was not altered by metformin (1.56±0.19 g; p=N/S). In contrast to the severely impaired endothelial vasomotor function reported in male ZDF in the literature, robust EDR was observed in female ZDF (72±7 %) that was similar to Lean (75±6 %; p=N/S) and that was unaltered by exercise training (76±5 %; p=N/S) or metformin (76±6 %; p=N/S). These results indicate that enhanced α₁ adrenergic contraction is a mechanism of altered vasomotor function in female type 2 diabetic ZDF rats and that it could possibly be addressed by a chronic exercise training intervention. The main novelty of the thesis is the extension of the current understanding of endothelial vasomotor function to hypertensive and type 2 diabetic females. The knowledge gained from examining mechanisms involved in endothelial impairments in ageing hypertensive females and from testing the therapeutic potential of currently used anti-diabetic interventions in the type 2 diabetic female vasculature has interesting potential application. This basic scientific information could help direct clinical therapeutic strategies to target population-specific mechanisms of dysfunction. Understanding female sex-specific endothelial behaviour in patient populations is important for describing cardiovascular complications, defining mechanisms, and applying appropriate therapeutic targets. Findings from this thesis indicate a sex-dependence of the total divergence of endothelial function (e.g. female type 2 diabetic rats vs. male counterparts in the literature) and of the interaction of disease variables (e.g. age) and endothelial vasomotor responses.

Page generated in 0.0451 seconds