• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of CFP1 in murine embryonic stem cell function and liver regeneration

Mahadevan, Jyothi 11 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / CXXC finger protein 1 (Cfp1), a component of the Set1 histone methyltransferase complex, is a critical epigenetic regulator of both histone and cytosine methylation. Murine embryos lacking Cfp1 are unable to gastrulate and Cfp1-null embryonic stem (ES) cells fail to undergo cellular differentiation in vitro. However, expression of wild type Cfp1 in Cfp1-null ES cells rescues differentiation capacity, suggesting that dynamic epigenetic changes occurring during lineage specification require Cfp1. The domain structure of Cfp1 consists of a DNA binding CXXC domain and an N-terminal plant homeodomain (PHD). PHDs are frequently observed in chromatin remodeling proteins, functioning as reader modules for histone marks. However, the histone binding properties and underlying functional significance of Cfp1 PHD are largely unknown. My research revealed that Cfp1 PHD directly and specifically binds to histone H3K4me1/me2/me3 marks. A point mutation that abolishes binding to methylated H3K4 (W49A) does not affect rescue of cellular differentiation, but, point mutations that abolish both methylated H3K4 (W49A) and DNA (C169A) binding result in defective in vitro differentiation, indicating that PHD and CXXC exhibit redundant functions. The mammalian liver has the unique ability to regenerate following injury. Previous studies indicated that Cfp1 is essential for hematopoiesis in zebrafish and mice. I hypothesized that Cfp1 additionally plays a role in liver development and regeneration. To understand the importance of Cfp1 in liver development and regeneration, I generated a mouse line lacking Cfp1 specifically in the liver (Cfp1fl/fl Alb-Cre+). Around 40% of these mice display a wasting phenotype and die within a year. Livers of these mice have altered global H3K4me3 levels and often exhibit regenerative nodules. Most importantly, livers of these mice display an impaired regenerative response following partial hepatectomy. Collectively, these findings establish Cfp1 as an epigenetic regulator essential for ES cell function and liver homeostasis and regeneration.

Page generated in 0.0575 seconds