• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface Modification of MXenes: A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices

Ahmed, Bilal 31 December 2017 (has links)
The recent discovery of layered transition metal carbides (MXenes) is one of the most important developments in two-dimensional (2D) materials. Preliminary theoretical and experimental studies suggest a wide range of potential applications for MXenes. The MXenes are prepared by chemically etching ‘A’-layer element from layered ternary metal carbides, nitrides and carbonitrides (MAX phases) through aqueous acid treatment, which results in various surface terminations such as hydroxyl, oxygen or fluorine. It has been found that surface terminations play a critical role in defining MXene properties and affects MXene performance in different applications such as electrochemical energy storage, electromagnetic interference shielding, water purification, sensors and catalysis. Also, the electronic, thermoelectric, structural, plasmonic and optical properties of MXenes largely depend upon surface terminations. Thus, controlling the surface chemistry if MXenes can be an efficient way to improve their properties. This research mainly aims to perform surface modifications of two commonly studied MXenes; Ti2C and Ti3C2, via chemical, thermal or physical processes to enhance electrochemical energy storage properties. The as-prepared and surface modified MXenes have been studied as electrode materials in Li-ion batteries (LIBs) and supercapacitors (SCs). In pursuit of desirable MXene surface, we have developed an in-situ room temperature oxidation process, which resulted in TiO2/MXene nanocomposite and enhanced Li-ion storage. The idea of making metal oxide and MXene nanocomposites was taken to the next level by combining a high capacity anode materials – SnO2 – and MXene. By taking advantage of already existing surface functional groups (–OH), we have developed a composite of SnO2/MXene by atomic layer deposition (ALD) which showed enhanced capacity and excellent cyclic stability. Thermal annealing of MXene at elevated temperature under different atmospheres was carried out and detailed surface chemistry was studied to analyze the change in surface functional groups and its effect on electrochemical performance. Also, we could replace surface functional groups with desirable heteroatoms (e.g., nitrogen) by plasma processing and studied their effect on energy storage properties. This work provides an experimental baseline for surface modification of MXene and helps to understand the role of various surface functional groups in MXene electrode electrochemical performance.
2

2D-material nanocomposites with nonlinear optical properties for laser protection

Ross, Nils January 2021 (has links)
Lasers are increasingly used for a wide range of different applications for both civil and military purposes. Due to the distinct properties of laser light, use of lasers often comes with a risk of damage to the human eye and other optical sensors. Therefore, an effective laser protection is needed. 2D-materials is a relatively new class of materials, which have shown to possess many unique properties compared to its bulk counterparts. Some 2D-materials exhibit nonlinear optical (NLO) properties, and specifically optical power limiting (OPL) effects, and have therefore been researched for laser protection applications. In this work, two different 2D-materials, MXene Ti3C2 and graphene oxide (GO), have been combined with a hybrid organic-inorganic polymer, a so called melting gel (MG), to synthesise nanocomposites possessing OPL effects for laser protection applications. Different methods of incorporating the 2D-materials in the polymer matrix as well as the effect on optical properties of different concentrations of 2D-materials were investigated. The prepared nanocomposites were characterised using optical microscopy, spectroscopy and OPL measurements in order to investigate and quantify their linear and nonlinear optical properties. The MG was optically clear, mechanically stable and easy to synthesise, which makes it a suitable candidate as a matrix for a laser protection nanocomposite. Additionally, it was possible to dope the MG with the two different 2D-materials to create nanocomposites showing desirable optical properties in the visible spectrum. However, many samples showed signs of clustered 2D-particles indicating that the dispersion could be improved. Finally, OPL measurements, performed at 532 nm, showed that the MG itself exhibited OPL effects, both 2D-materials showed a stronger OPL effect than the non-doped MG and that GO-doped samples gave a better protection than the MXene samples.

Page generated in 0.0143 seconds