• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 42
  • 20
  • 13
  • 11
  • 10
  • 9
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Safety and Stability of Samples Stored on Filter Paper for Molecular Arbovirus Diagnosis

Bringeland, Emelie January 2021 (has links)
Expanding urbanization, climate change, and population growth contribute to increased transmission and spread of arthropod-borne viruses (arboviruses), many of which cause severe disease in humans. Pathogenic arboviruses include dengue, Zika, tick-borne encephalitis, and sindbis viruses, which together threaten more than half the global population. Thus, there is a constant need for safe, specific, and sensitive molecular tests to identify early-stage infections for accurate diagnosis and molecular epidemiological data for disease prevention and control. The study tested the biosafety of using FTA™ cards when working with pathogenic arboviruses by conducting an infectivity assay using sindbis virus. Conditions for RNA extraction and storage of arboviruses on FTA were analyzed by measuring viral RNA (vRNA) stability using a SYBR-Green, Pan-Flavi RT-qPCR method composed of degenerate primers able to detect a variety of flaviviruses. Data from a Pan-Flavi RT-qPCR study comprising of 222 clinical blood and serum samples collected from a 2018 dengue virus outbreak in Hanoi (Vietnam) was analyzed to establish applicability of FTA for molecular epidemiology and diagnosis. Results showed that sindbis virus infectivity was inhibited by FTA-adsorption. FTA-adsorbed arboviruses were extracted with the highest yield using Trizol extraction and were preserved at storage at 4-20ºC for up to 30 days. The results showed that clinical blood samples acquired higher yields of vRNA for molecular testing than serum samples and that it may be possible to perform sequencing for genomic analysis. The study suggests that FTA cards may facilitate the storage and transportation of adsorbed arboviruses for downstream molecular epidemiological and diagnostic tests.
42

Role metody PCR v diagnostice neuroinfekcí vyvolaných herpetickými viry / Diagnostics of neuroinfection caused by human herpesviruses using nucleic acid amplification methods

Labská, Klára January 2021 (has links)
of thesis Diagnostics of neuroinfection caused by human herpesviruses using nucleic acid amplification methods author: MUDr. Klára Labská supervisor: doc. MUDr. Vilma Marešová, CSc. In recent years, the diagnosis of neuroinfections has undergone a shift towards molecular biology methods. Our research focused on the predictive value of the capture of herpesvirus (HV) DNA in cerebrospinal fluid. In the first study, we examined the presence of DNA neurotropic herpes viruses (HSV1, HSV2, VZV and HHV6) in cerebrospinal fluid in immunocompetent patients with laboratory-confirmed tick-borne meningoencephalitis and enterovirus meningitis and meningoencephalitis. The control group consisted of patients with proven absence of an inflammation in the cerebrospinal fluid. Patients were followed for 6 months. The course of the disease and its consequences, including laboratory tests, were compared between groups of patients with and without the presence of HV DNA. In the second study, we tried to demonstrate the presence of HSV1 DNA in cerebrospinal fluid during its symptomatic reactivation in patients with purulent meningitis. In our group of immunocompetent patients with non-purulent inflammation in the cerebrospinal fluid, the proportion of HV DNA positive patients reached 7.5% (13 out of 173), we also...

Page generated in 0.0692 seconds