• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometry and composition of ice banks in a macrotidal channel

Black, CarolAnne 17 May 2013 (has links)
Large ice blocks containing enough sediment to be denser than sea water form in the Minas Basin of the Bay of Fundy. The timing of ice block formation and ice block composition were monitored to improve understanding of the potential threat to tidal power generators posed by collision with ice blocks. Large blocks are produced from ice cliffs that form when anchored ice obstructs tidal channels and decreases flow speed. Decreased flow causes the channel cross-sectional area to decrease. In 2012, the Kennetcook River cross- sectional area decreased by 21% due to the formation of ice cliffs. Large ice blocks separated from the walls during the two spring tides following a 20-day time lag of the minimum air temperature. Ten percent of sampled ice blocks were denser than freshwater. Four of twelve ice cores collected from the ice cliffs along the Kennetcook River contained enough sediment to become denser than seawater.
2

Response of barrier island fish assemblages to impacts from multiple hurricanes: assessing resilience of Chandeleur Island fish assemblages to hurricanes Ivan (2004) and Katrina (2005)

Ellinwood, Mark Chad 19 December 2008 (has links)
Hurricanes can temporarily disrupt seasonal patterns of fish assemblage change or result in permanent changes in fish assemblages. I studied the effects of two hurricanes on fish assemblages at the Chandeleur Islands and the possible influence that storm-generated tidal channels may have on the composition of local fish assemblages. I also compared recently collected data to historic ichthyofaunal survey data collected over thirty years ago at the Chandeleur Islands. Near shore fish assemblages changed the most after hurricanes but changes in species composition were primarily due to increases in abundance and diversity. During July 2007 there was no significant difference between fish assemblages in channel and seagrass habitats, although significant differences among wash-over channels existed. Loss of habitat and the increased intensity and frequency of recent storms may explain why current fish assemblages at the Chandeleur Islands are less diverse (as measured by taxonomic distinctness) than assemblages collected during 1969-1971.
3

Suspended-Sediment Transport in a New Jersey Salt Marsh Tidal Channel:

Armstrong, Mike January 2023 (has links)
Thesis advisor: Noah P. Snyder / Salt marshes are hotspots for biodiversity, important carbon sinks, pollutant filtration systems, and buffers which strengthen coastal resiliency. Detailed geomorphic and sedimentary observations are vital to understanding the stability and sustainability of salt marshes in response to sediment placement restoration projects. Marsh stability is dependent on the suspended sediment and nutrients that are delivered to the marsh platform by meandering tidal channels. This study observed suspended-sediment fluxes at the mouth of Southeast Creek on Gull Island at Seven Mile Island Innovation Lab in coastal, southern New Jersey. The mesotidal, almost entirely low marsh, southern Gull Island received a recent dredge placement in fall 2020 of approximately 30,600 cubic meters of sediment from the adjacent New Jersey Intracoastal Waterway. Wetland instrumentation platforms to monitor post-dredge conditions were deployed summer 2021 and were removed in summer 2022. This instrumentation measured current velocity and depth time series at all platforms and suspended-sediment concentration using acoustic backscatter techniques at the mouth of Southeast Creek. This study is motivated by understanding the ongoing transport and deposition of dredged material placed on the marsh island. I found that velocities were ebb-dominant during all conditions. Concentrations on the flood phase of the tide were approximately half the magnitude of those seen on the ebb phases of the tide for normal circumstances while elevated concentrations were observed on ebbing and flooding currents for storms. A net export of 6.27 x 105 kg suspended sediment was observed through the tidal channel for all timescales throughout the deployment period. / Thesis (MS) — Boston College, 2023. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
4

Towards RANS Parameterization of Vertical Mixing by Langmuir Turbulence in Shallow Coastal Shelves

Sinha, Nityanand 01 January 2013 (has links)
Langmuir turbulence in the upper ocean is generated by the interaction between the wind-driven shear current and the Stokes drift velocity induced by surface gravity waves. In homogenous (neutrally stratified) shallow water, the largest scales of Langmuir turbulence are characterized by full-depth Langmuir circulation (LC). LC consists of parallel counter-rotating vortices aligned roughly in the direction of the wind. In shallow coastal shelves, LC has been observed engulfing the entire water column, interacting with the boundary layer and serving as an important mechanism for sediment re-suspension. In this research, large-eddy simulations (LES) of Langmuir turbulence with full-depth LC in a wind-driven shear current have revealed deviations from classical log-layer dynamics in the surface and bottom of the water column. For example, mixing due to full-depth LC induces a large wake region eroding the classical bottom (bed) log-law velocity profile. Meanwhile, near the surface, Stokes drift shear serves to intensify small scale eddies leading to enhanced mixing and disruption of the surface velocity log-law. The modified surface and bottom log-layer dynamics induced by Langmuir turbulence and full-depth LC have important implications on Reynolds-averaged Navier-Stokes simulations (RANSS) of the general coastal ocean circulation. Turbulence models in RANSS are typically calibrated under the assumption of log-layer dynamics, which could potentially be invalid during occurrence of Langmuir turbulence and associated full-depth LC. A K-Profile Parameterization (KPP) of the Reynolds shear stress in RANSS is introduced capturing the basic mechanisms by which shallow water Langmuir turbulence and full-depth LC impact the mean flow. Single water column RANS simulations with the new parameterization are presented showing good agreement with LES
5

Validity of Holocene Analogs for Ancient Carbonate Stratigraphic Successions: Insights from a Heterogeneous Pleistocene Carbonate Platform Deposit

Hazard, Colby 01 February 2015 (has links) (PDF)
Observations of modern carbonate depositional environments and their accompanying depositional models have been used for decades in the reconstruction and interpretation of ancient carbonate depositional environments and stratigraphic successions. While these Holocene models are necessary for interpreting their more ancient counterparts, they inherently exclude important factors related to the erosion, diagenesis, and ultimate preservation of sediments and sedimentary structures that are ubiquitous in shallow marine carbonate environments. Andros Island, Bahamas is an ideal location to examine the validity of Holocene conceptual models, where geologically young (Late Pleistocene) limestones can be studied immediately adjacent to their well-documented modern equivalents. For this study, two 3D ground-penetrating radar (GPR) datasets (200 MHz and 400 MHz) were collected at a schoolyard in northwest Andros. These surveys reveal the geometries and internal characteristics of a peloidal-oolitic sand wave and tidal channel in unprecedented detail. These two prominent features are underlain by low-energy lagoonal wackestones and packstones, and are bordered laterally to the northwest by wackestones-packstones intermixed with thin sheets of peloidaloolitic grainstone. A deeper radar surface is observed at approximately 6 m depth dipping gently to the west, and is interpreted to be a karstified exposure surface delineating the base of a complete depositional sequence. Interpretation of the 3D radar volumes is enhanced and constrained by data from three cores drilled through the crest and toe of the sand wave, and through the tidal channel. This study is the first of its kind to capture the complex heterogeneity of a carbonate depositional package in three dimensions, where various depositional environments, sedimentary structures, and textures (mudstone to grainstone) have been preserved within a small volume.The results from this study suggest that the degree of vertical and lateral heterogeneity in preserved carbonate successions is often more complex than what can be observed in modern depositional environments, where sediments can generally only be observed in two dimensions, at an instant in time. Data from this study demonstrate the value of using two overlapping GPR datasets at differing resolutions to image the internal characteristics of a complete carbonate depositional package in three dimensions. From these datasets, a depositional model similar to other Holocene and Pleistocene carbonate depositional models is derived.
6

Chenaux tidaux et dynamique des prés-salés en régime méga-tidal : approche multi-temporelle du siècle à l'événement de marée / Tidal channel and salt marsh dynamic in megatidal environment : multi-temporal approach from secular to tide event time scale

Leroux, Jérôme 19 December 2013 (has links)
Les prés-salés sont des interfaces complexes entre le milieu continental et maritime d'une grande importance environnementale. En contexte de changement climatique, ces zones vulnérables font maintenant l'objet d'une attention particulière. Cette étude porte sur la mesure et la compréhension de la dynamique des prés-salés soumis à un régime méga-tidal (marnage supérieur à 10 m), à travers l'étude de deux estuaires des côtes du Nord-Ouest de la France : l'estuaire du Couesnon en baie du Mont-Saint-Michel (MSM) et l'estuaire de la Somme. L'originalité de l'approche est de considérer une très large gamme d'échelles temporelles, depuis l'échelle séculaire jusqu'à l'événement de marée. A l'échelle séculaire, la mesure de l'évolution de la surface des prés salés en Baie de Somme, à partir de documents historiques et de photos aériennes, montre une évolution étonnamment similaire à celle de l'estuaire du Couesnon depuis la canalisation de la partie terminale de ces rivières au milieu du XIXème siècle. Après une phase de développement rapide des prés salés, une réduction concomitante des taux de croissance est observée dans les deux estuaires au début du XXème siècle. Nous proposons que l'augmentation du niveau marin à cette période soit responsable de cette réduction de croissance des prés-salés. L'analyse pluriannuelle des surfaces en baie de Somme met en évidence des périodes d'érosion des prés-salés résultant de la migration des chenaux tidaux à la frontière des prés-salés. Une étude sur 3 ans en baie du MSM a permis de caractériser le fonctionnement d'un chenal tidal sinueux en frontière des prés salés, grâce à des mesures topographiques inédites réalisées avec un Lidar terrestre haute résolution, combinées à des mesures hydro-sédimentaires. Des relevés journaliers durant les marées d'équinoxe de Septembre et de Mars ont mis en évidence une relation très non-linéaire entre érosion des berges et hauteur de marée. Cette relation est régie principalement par une forte augmentation des vitesses du courant lors du jusant. L'étude des taux d'accrétion dans la partie interne du méandre tidal a révélé l'importance de la présence de la végétation pionnière. Des lois empiriques de sédimentation et d'érosion en fonction de la hauteur de marée sont proposées. Il est montré que 6 % des marées les plus hautes de l'année sont responsables de 90 % de l'érosion des prés-salés par migration du chenal, alors que la sédimentation est dominée par les marées les plus fréquentes. Ces travaux mettent en évidence le rôle fondamental de la divagation des chenaux en marge des prés salés méga-tidaux. Leur dynamique est contrôlée principalement par les marées les plus importantes, dont la fréquence est régit par des cycles nodaux de 4,4 à 18,6 ans. Les données topographiques et hydro-sédimentaires inédites acquises durant ce travail de thèse fournissent des contraintes fortes pour le développement de modèle d'évolution des prés salés. / Salt marshes are complex interfaces between land and sea of high environmental values. Theses vulnerable landforms are now subjected to particular attention since they are very sensitive to sea level changes and storm events. This study focuses on salt marsh dynamic subjected to a mega-tidal range (higher than 10 m) that received less attention, through the study of two estuaries of the north-western coast of France: The Couesnon estuary in the Bay of Mont -Saint-Michel and the Somme estuary. The originality of this study is to consider a wide range of time scales, from the secular one to tide events. At secular time scale, we measure the evolution of salt marsh surfaces in the Somme bay, from historical documents and aerial photographs. The comparison with the Couesnon estuary reveals a surprisingly similar evolution of salt marsh extension, since the derivation and embankment of their main river in early mid XIXth century. After a period of rapid salt marsh extension, a concomitant reduction of growth rates is observed in both estuaries in the early XXth century. We propose that the increase in sea level rise during this period is responsible for the reduced growth of salt marshes. The pluriannual analysis highlights periods of erosion of salt marshes resulting from the tidal channels migration on salt marsh fringe. However, the pluriannual time scale does not capture the processes governing the dynamics of channel migration. This has motivated a 3 years study of a sinuous tidal channel located on the fringe of the marsh with the aim to understand its dynamics at daily to annual scales. We have acquired 36 high resolution topographic surveys with Terrestrial Laser Scanner. We used daily surveys during spring tides of various High Water Level (HWL) to analyze channel dynamics at tidal event timescales. Daily TLS measurements revealed a non-linear relationship between bank erosion and tidal height. This relationship is related to a sharp increase in flow velocities during the ebb (up to 2.2 m/s) for overmarsh tides. Spatially averaged accretion on the inner bend tends to increase linearly with HWL and is increased by a factor 2 during summer/autumn spring tides at the peak of pioneer vegetation development. We propose empirical laws of sedimentation and erosion depending on the tide height, which model that 6% of the highest tides of the year are responsible for 90 % of salt marsh erosion by channel migration, while sedimentation is dominated by frequent tides. These results highlight the need to incorporate the influence of vegetation on sedimentation rates as well as tidal migration processes in models of salt marsh dynamic in mega-tidal environment. Long term modeling should account for the highest tides of the year, that make tidal channel very sensitive to the nodal cycle (18.6 years) which controls the occurrence of the highest tides in mega-tidal environment.

Page generated in 0.0437 seconds