Spelling suggestions: "subject:"tikhonov, regularização dde"" "subject:"tikhonov, regularização dee""
1 |
Técnicas resolutivas para problemas mal postosBorges, Altemir José 24 October 2012 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática e Computação Científica, Florianópolis, 2010 / Made available in DSpace on 2012-10-24T22:24:37Z (GMT). No. of bitstreams: 1
280833.pdf: 697674 bytes, checksum: e8a5b8acb0f9edd4095e86fb4ca90188 (MD5) / Este trabalho apresenta alguns dos métodos diretos e alguns dos iterativos mais comumente utilizados para resolver problemas mal postos discretos, focalizando diferentes estratégias de escolha do parâmetro de regularização. Os métodos diretos aqui abordados são o da GCV, da curva-L, do ponto fixo, da quase-otimalidade e o da discrepância. Os métodos iterativos são o LSQR, GMRES e o RRGMRES. Estes métodos são aplicados na resolução dos problemas teste Heat, Baart, Deriv2, Foxgood, Gravity, I\_laplace, Phillips, Shaw, Tomo e Wing, da literatura. Nos métodos iterativos são adotados os critérios de parada de Morigi e da discrepância. Para os métodos iterativos, aqui também é apresentado um novo critério de parada baseado no decrescimento da norma do resíduo e no crescimento da norma da solução. Este novo critério desempenhou melhor performance que os critérios de Morigi e da discrepância, na maioria dos problemas testes abordados.
|
2 |
Métodos de quadrados mínimos totais regularizadosRuiz Quiroz, Jonathan January 2014 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática Pura e Aplicada, Florianópolis, 2014. / Made available in DSpace on 2014-08-06T18:05:14Z (GMT). No. of bitstreams: 1
326671.pdf: 692511 bytes, checksum: b032c7f3c62c469d3b5fb9110e5d5179 (MD5)
Previous issue date: 2014 / Neste trabalho estudamos métodos de regularização para o problema de Quadrados Mínimos Totais (RTLS) baseado em técnicas da Álgebra Linear Numérica e teoria de regularização. O foco principal do trabalho é o estudo da regularização de Tikhonov para o método de Quadrados Mínimos Totais (TLS) e de uma técnica de truncamento que atua como regularizador. No primeiro caso, abordamos um método desenvolvido por Renaut e Guo baseado na resolução de um sistema não linear através de um problema de autovalores lineares e sobre o tamanho da solução. Resultados numéricos mostram que este método pode não funcionar em alguns problemas. Então, estudamos o método TLS truncado (T-TLS) e introduzimos um critério de escolha do parâmetro de truncamento baseado no trabalho de Bazán, Cunha e Borges que não requer informação prévia sobre a solução. Ambos os métodos são ilustrados numericamente e comparados com respeito à qualidade das soluções. Os resultados numéricos mostram que o método de truncamento é uma boa alternativa para resolver o problema RTLS.<br> / Abstract : In this paper we study regularization methods for Total Least Squares problems (RTLS) based on Numerical Linear Algebra tools and regularization theory. The focus of the work is to study the Tikhonov regularizationmethod for Total Least Square (TLS) and a truncation technique which acts as regularization. First, we study a method developed by Renaut and Guo based on linear eigenvalue problems and on a priori information about the size of the solution. Numerical results show that this method may not work in some problems. Then, we study the truncated TLS method (T-TLS) and introduce a criterion for choosing the truncation parameter based on work by Baz´an, Borges and Cunha that does not require any a priori information about the solution. Both methods are illustrated numerically and compared in terms of efficiency and accuracy. The numerical results show that the truncation method is a good alternative to solve the RTLS problem.
|
3 |
Métodos de projeção para regularização com informação a prioriColiboro, Thiane Poncetta Pereira 23 October 2012 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática e Computação Científica, Florianópolis, 2011 / Made available in DSpace on 2012-10-23T15:29:57Z (GMT). No. of bitstreams: 1
289274.pdf: 1269253 bytes, checksum: 502dbaeb243e877082999d36551b55bb (MD5) / Apresentamos três métodos de projeção para problemas discretos mal postos de grande porte que incorporam informação a priori da solução do problema. Os métodos são baseados em uma transformação do funcional de Tikhonov da forma geral (com uma seminorma como termo regularizante) para a forma padrão [26, 53]. Os dois primeiros métodos combinam o processo de bidiagonalização de Golub-Kahan [15] com a regularização de Tikhonov na forma geral, calculando soluções aproximadas em subespaços de Krylov. O parâmetro de regularização ? é escolhido pelo Método de Ponto Fixo (FP) de Bazán [3]. O terceiro método não depende da determinação do parâmetro ? sendo, portanto, uma alternativa para a Regularização de Tikhonov. São apresentadas algumas generalidades sobre problemas inversos e problemas discretos mal-postos. Também é feito um estudo sobre projeções oblíquas, conceito essencial na tranformação para a forma padrão. A performance dos métodos quando aplicados a problemas testes bem conhecidos e ao tratamento de imagens é ilustrada numericamente.
|
Page generated in 0.0912 seconds