• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MARRT Pipeline: Pipeline for Markerless Augmented Reality Systems Based on Real-Time Structure from Motion

Paulo Gomes Neto, Severino 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T15:53:49Z (GMT). No. of bitstreams: 2 arquivo1931_1.pdf: 3171518 bytes, checksum: 18e05da39f750dea38eaa754f1aa4735 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Atualmente, com o aumento do poder computacional e os estudos em usabilidade, sistemas de tempo real e foto-realismo, os requisitos de qualquer sistema de computador são mais complexos e sofisticados. Sistemas de Realidade Aumentada não são exceção em sua tentativa de resolver problemas da vida real do usuário com um nível reduzido de risco, tempo gasto ou complexidade de aprendizado. Tais sistemas podem ser classificados como baseados em marcadores ou livres de marcadores. O papel essencial da realidade aumentada sem marcadores é evitar o uso desnecessário e indesejável de marcadores nas aplicações. Para atender à demanda por tecnologias de realidade aumentada robustas e não-intrusivas, esta dissertação propõe uma cadeia de execução para o desenvolvimento de aplicações de realidade aumentada sem marcadores, especialmente baseadas na técnica de recuperação da estrutura a partir do movimento em tempo real
2

Real-time Wind Direction Filtering for Sailboat Race Tracking

Nielsen, Emil January 2015 (has links)
In this paper, an algorithm that calculates the direction of the wind from the directions of sailors during fleet races is proposed. The algorithm is based on a 1-D spatial convolution and it is named Convolution Based Direction Filtering (CBDF). The CBDF-algorithm is used in the TracTrac race client that broadcasts sailboat races in real-time. The fact that the proposed algorithm is polynomial makes it suitable, to be used as a real-time application inside TracTrac, even for large fleets. More concretely, we show that the time complexity of the CBDF-algorithm is O(n2), in the worst-case, where n > 0 is the number of boats in competition. It is also shown that in more realistic sailing scenarios, the CBDF-algorithm is in fact a linear algorithm.

Page generated in 0.0892 seconds