Spelling suggestions: "subject:"time correlation"" "subject:"time borrelation""
1 |
A Time Correlated Approach to Adaptable Digital FilteringGrossman, Hy, Pellarin, Steve 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Signal conditioning is a critical element in all data telemetry systems. Data from all sensors
must be band limited prior to digitization and transmission to prevent the potentially
disastrous effects of aliasing. While the 6th order analog low-pass Butterworth filter has long
been the de facto standard for data channel filtering, advances in digital signal processing
techniques now provide a potentially better alternative.
This paper describes the challenges in developing a flexible approach to adaptable data
channel filtering using DSP techniques. Factors such as anti-alias filter requirements, time
correlated sampling, decimation and filter delays will be discussed. Also discussed will be
the implementation and relative merits and drawbacks of various symmetrical FIR and IIR
filters. The discussion will be presented from an intuitive and practical perspective as much
as possible.
|
2 |
ENCRYPTED CORRELATING SOURCE SELECTORReid, Eric 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Modern telemetry and data streams are often encrypted. The majority of range testing
activities require multiple ground stations to collect these streams and send them to a
central processing location. Each of these streams currently needs to be individually
decrypted before best source selection, processing and analysis. Using innovative
techniques, it is possible to time correlate these encrypted streams, compare them with
each other and create an output stream of better quality than any of the individual
streams. This stream can then be decrypted by a single decryption device, greatly
reducing cost and complexity.
|
3 |
MULTIPLE TIME BASE SYCHRONIZATION PROCESS APPLIED TO THE FLIGHT TESTS CAMPAIGN OF A GPS ATTITUDE DETERMINATION ALGORITMLeite, Nelson Paiva Oliveira, Walter, Fernando 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / For the final evaluation of a GPS attitude determination algorithm, it was determined its true
performance in terms of its accuracy, reliability and dynamic response. To accomplish that, a
flight test campaign was carried out to validate the attitude determination algorithm. In this
phase, the measured aircraft attitude was compared to a reference attitude, to allow the
determination of the errors. The system was built using non-dedicated THALES Z-FX airborne
GPS receivers and a complete Flight Tests Instrumentation (FTI) System. Each GPS receiver
operates synchronized with its internal time base. The FTI measurements are synchronized to an
IRIG-B time base. All time bases have their own random walk characteristic. To avoid C/A code
ambiguity, when its internal time base approaches ±1ms error from the GPS time, its clock is
then corrected causing time and phase observables discontinuities. A multiple time base
synchronization process was developed to correlate GPS and FTI data. The results are presented
and the residual errors were considered acceptable. These data allowed the determination of the
performance and accuracy of the GPS attitude determination algorithm. The tests profiles are
fully compliant with the Federal Aviation Administration (FAA) Advisory Circular (AC) 25-7A.
|
4 |
Resilient Navigation through Jamming Detection and Measurement Error ModelingJada, Sandeep Kiran 28 October 2024 (has links)
Global Navigation Satellite Systems (GNSS) provide critical positioning, navigation, and timing (PNT) services across various sectors. GNSS signals are weak when they reach Earth from Medium Earth Orbit (MEO), making them vulnerable to jamming. The jamming threat has been growing over the past decade, putting critical services at risk. In response, the National Space-Based PNT Advisory Board and the White House advocate for policies and technologies to protect, toughen, and augment GPS for a more resilient PNT.
Time-sequential estimation improves navigation accuracy and allows for the augmentation of GNSS with other difficult-to-interfere sensors. Safety-critical navigation applications (e.g., GNSS/INS-based aircraft localization) that use time-sequential estimation require high-integrity measurement error time correlation models to compute estimation error bounds.
In response, two new methods to identify high-integrity measurement error time correlation models from experimental data are developed and evaluated in this thesis. As opposed to bounding autocorrelation functions in the time domain and power spectra in the frequency domain, methods proposed in this thesis use bounding of lagged product distributions in the time domain and scaled periodogram distributions in the frequency domain. The proposed methods can identify tight-bounding models from empirical data, resulting in tighter estimation error bounds. The sample distributions are bound using theoretical First-order Gauss-Markov process (FOGMP) model distributions derived in this thesis. FOGMP models provide means to account for error time correlation while being easily incorporated into linear estimators. The two methods were evaluated using simulated and experimental GPS measurement error data collected in a mild multipath environment.
To protect and alert GNSS end users of jamming, this thesis proposes and evaluates an autonomous algorithm to detect jamming using publicly available data from large receiver networks. The algorithm uses carrier-to-noise ratio (C/N0)-based jamming detectors that are optimal, self-calibrating, receiver-independent, and while adhering to a predefined false alert rate. This algorithm was tested using data from networks with hundreds of receivers, revealing patterns indicative of intentional interference, which provided an opportunity to validate the detector. This validation activity, described in this thesis, consists of designing a portable hardware setup, deriving an optimal power-based jamming monitor for independent detection, and time-frequency analysis of wideband RF (WBRF) data collected during jamming events. The analysis of the WBRF data from a genuine jamming event detected while driving on I-25 in Denver, Colorado, USA, revealed power variations resembling a personal privacy device (PPD), validating the C/N0 detector's result.
Finally, this thesis investigates the cause of recurring false alerts in our power-based jamming detectors. These false alerts are caused by a few short pulses of power increases, which other researchers also observe. The time-frequency analysis of signals from the pulses revealed binary data encoded using frequency shift keying (FSK) in the GPS L1 band. Various experiments confirmed the signals are not aliases of out-of-band signals. A survey of similar encoded messages identified the source as car key fobs and other devices transmitting at 315 MHz, nowhere near the GPS L1 band, with an unattenuated 5$^{th}$ harmonic in the GPS L1 band. The RF emission regulations were analyzed to identify mitigation. / Doctor of Philosophy / Global Navigation Satellite Systems (GNSS) have become integral to modern-day life. Many essential services rely on GNSS-provided Positioning, Navigation, and Timing (PNT) services; power grids rely on accurate GNSS-provides timing for synchronization; stock markets use them for time-stamping trades; aircraft and ships use GNSS to correct accumulated position errors regularly; to name a few. In addition, the availability of cheap and accessible PNT services combined with mobile internet spawned new service sectors through mobile applications. A 2019 study published by the National Institute of Standards and Technology (NIST) estimates that GPS has generated $1.4 trillion in U.S. economic benefits since the system became available in the 1980s.
With the wide adoption of GNSS services comes new motives for interference. These motives can range from delivery workers and truck drivers trying to hide their location from their employers to something more nefarious, such as criminals trying to evade law enforcement surveillance. GNSS jamming is a type of interference in which the attacker drowns out the faint GNSS signals, broadcast from medium Earth Orbit (MEO) at 20,000 km, with a powerful RF transmitter. Some commonly used devices are transmitters are cheaply available for as low as $10 on Amazon, known as personal privacy devices (PPDs). Another source of jamming comes from militaries in conflict zones overseas, jamming GNSS signals over large areas of a country or a city. However, two major incidents in the US have disrupted air traffic over busy airspace, such as in Denver and Dallas. This threat of GNSS interference has grown over the past decade and is only getting worse. The White House and other organizations advocate for policies for a more resilient PNT; to protect, toughen, and augment GNSS.
%
This thesis contributes to protecting GNSS frequencies through autonomous algorithms that process publicly available signal quality data from large receiver networks for jamming detection. This autonomous algorithm uses detectors that are self-calibrating and optimal, i.e., minimizing the probability of missed detection while targeting a predefined false alert probability. Several jamming event patterns consistent with intentional interference were detected using this algorithm. The signal-quality-based detectors were validated using an independent power-based optimal jamming detector derived in this thesis.
Spurious recurring false alerts triggered the power detector. An investigation described in the thesis discovered that car key fobs and other devices emit RF energy in restricted GPS frequencies. Based on the analysis of FCC regulation for RF transmitters, mitigation is proposed for power-based jamming detectors to prevent false alarms.
Time-sequential estimation improves navigation accuracy and allows for the augmentation of GNSS with other difficult-to-interfered sensors such as IMU or LIDAR. Safety-critical navigation applications can benefit from time-sequential estimation, but they require high-integrity measurement error time correlation models to compute bounds on positioning errors. Two new methods to derive high-integrity measurement error time correlation models from experimental data are developed and evaluated in this thesis. These methods can derive tighter bounding models compared to the existing methods, reducing the uncertainty in position estimates. The two methods were implemented and evaluated using simulated and experimental GPS measurement error data collected in a mild multipath environment.
|
5 |
Approximate quantum dynamics methods for time correlation functionsSmith, Kyle Kurt Gabriel 03 July 2014 (has links)
The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states, (T = 20.0 K, n = 21.24 nm⁻³) and (T = 23.0 K, n = 24.61 nm⁻³) respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X-ray Scattering spectra. The combined use of computational and experimental methods enables a reduction in experimental uncertainties for the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD at momentum transfers lower than 12.8nm⁻¹. At larger momentum transfers the F K - LP I results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ~ 20.0 nm⁻¹ para-hydrogen provides a test case for improved approximations to quantum dynamics. We meet this demand for an improved approximate quantum dynamics method by developing two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in conjunction with the Feynman-Kleinert approximation of the density operator. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics are made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that this new Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method provides a great improvement over the Feynman-Kleinert implementation of the classical Wigner approximation, also known as FK-LPI, in which purely classical dynamics are used. Furthermore, it is shown that the first class of dynamics reduces to Centroid Molecular Dynamics (CMD) when used within the framework of the classical Wigner approximation for the Kubo transformed time correlation function. Finally, we apply the Feynman-Kleinert Quasi-Classical Wigner (FK- QCW) method to the same liquid para-hydrogen and ortho-deuterium system, previously studied using FK-LPI and RPMD. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor for all momentum transfers considered. This shows that FK-QCW provides a great improvement over FK-LPI for not only model problems, but also realistic systems. Furthermore, for small momentum transfers, where RPMD is applicable, it is shown that FK-QCW provides nearly the same results as RPMD, thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since one is not limited to correlation functions involving linear operators. This then suggests that the FK-QCW method is a top contender in the realm of approximate quantum dynamics methods which allow for the practical evaluation of time correlation functions. / text
|
6 |
Non-Fully Symmetric Space-Time Matern-Cauchy Correlation FunctionsZizhuang Wu (10712730) 28 April 2021 (has links)
<div>In spatio-temporal data analysis, the problem of non-separable space-time covariance functions is important and hard to deal with. Most of the famous constructions of these covariance functions are fully symmetric, which is inappropriate in many spatiotemporal processes. The Non-Fully Symmetric Space-Time (NFSST) Matern model by Zhang, T. and Zhang, H. (2015) provides a way to construct a non-fully symmetric non-separable space-time correlation function from marginal spatial and temporal Matern correlation functions.</div><div>In this work we use the relationship between the spatial Matern and temporal Cauchy correlation functions and their spectral densities, and provide a modification to their Bochner’s representation by including a space-time interaction term. Thus we can construct a non-fully symmetric space-time Matern-Cauchy model, from any given marginal spatial Matern and marginal temporal Cauchy correlation functions. We are able to perform computation and parameter estimate on this family, using the Taylor expansion of the correlation functions. This model has attractive properties: it has much faster estimation compared with NFSST Matern model when the spatio-temporal data is large; it enables the existence of temporal long-range dependence (LRD), adding substantially to the flexibility of marginal correlation function in the time domain. Several spatio-temporal meteorological data sets are studied using our model, including one case with temporal LRD.</div>
|
7 |
Influência de parâmetros moleculares em funções de correlação temporal na dinâmica de solvatação mecânica / Influence of molecular parameters on time correlations functions of mechanical solvation dynamicsMartins, Marcio Marques January 2004 (has links)
No presente trabalho descrevemos nossos resultados relativos à investigação da dinâmica de solvatação mecânica por meio de simulações por dinâmica molecular, respeitando o regime da resposta linear, em sistemas-modelo de argônio líquido com um soluto monoatômico ou diatômico dissolvido. Estudamos sistematicamente a influência dos parâmetros moleculares dos solutos (tamanho, polarizabilidade) e da densidade frente a vários modelos de solvatação. Funções de Correlação Temporal da Energia de Solvatação foram calculadas com relação à correlações de n-corpos (n = 2; 3) distinguindo interações repulsivas e atrativas para ambos os sistemas líquidos. Também obtivemos segundas derivadas temporais dessas funções referindo-se à parcelas translacionais, rotacionais e roto-translacionais na solução do diatômico. Encontramos que funções de correlação temporal coletivas podem ser razoavelmente bem aproximadas por correlações binárias a densidades baixas e, a densidades altas, correlações ternárias tornam-se mais importantes produzindo um descorrelacionamento mais rápido das funções coletivas devido a efeitos de cancelamento parciais. As funções de correlação para interações repulsivas e atrativas exibem comportamentos dinâmicos independentes do modelo de solvatação devido a fatores de escalonamento linear que afetam apenas as amplitudes das dessas funções de correlação temporal. Em geral, os sistemas com grau de liberdade rotacional apresentam tempos de correlação mais curtos para a dinâmica coletiva e tempos de correlação mais longos para as funções binárias e ternárias. Finalmente, esse estudo mostra que os sistemas contendo o diatômico relaxam-se predominantemente por mecanismos translacionais binários em modelos de solvatação envolvendo alterações apenas na polarizabilidade do soluto, e por mecanismos rotacionais atrativos binários em modelos envolvendo alterações no comprimento de ligação. / In the present work, we describe our results concerning our molecular dynamics investigation of the mechanical solvation dynamics within the linear response regime in model systems composed by liquid argon with a monoatomic or diatomic solute. The effect of molecular parameters (size, polarizability) and density has been elucidated for various solvation models. Time Correlation Functions for the solvation energy were calculated and separated into n-body (n = 2; 3) contributions distinguishing repulsive and attractive interactions in both liquid systems. In addition, we computed second time derivatives of these functions in order to describe translational, rotational, and roto-translational portions in the solutions containing the diatomics. We found that collective time correlation functions are well described by binary correlations at low liquid densities and, at high densities, ternary correlations become more important producing faster decaying collective time correlation functions due to partial cancellation effects. The repulsive and attractive time correlation functions exhibit a dynamic behavior that is independent on the solvation model due to linear scaling factors that only affect the absolute amplitudes of these functions. In general, the systems involving a rotational degree of freedom furnish smaller correlation times for the collective solvation dynamics, but stronger correlated two-body and three-body terms. Finally, this study shows that the solvation dynamics for the solution containing the diatomics relaxes predominatly by binary translational mechanisms when solvation models involving changes only in the polarizability parameter are considered. Binary attractive rotational mechanism become important in models with changes in the bond length.
|
8 |
Funções de Green em Mecânica EstatísticaFreire, Márcio de Melo January 2014 (has links)
FREIRE, Márcio de Melo. Funções de Green em Mecânica Estatística. 2014. 56 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-09-12T19:48:53Z
No. of bitstreams: 1
2014_dis_mmfreire.pdf: 935092 bytes, checksum: 28a3a9a1ed16462d01e40ff411a01564 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-09-12T19:50:01Z (GMT) No. of bitstreams: 1
2014_dis_mmfreire.pdf: 935092 bytes, checksum: 28a3a9a1ed16462d01e40ff411a01564 (MD5) / Made available in DSpace on 2014-09-12T19:50:01Z (GMT). No. of bitstreams: 1
2014_dis_mmfreire.pdf: 935092 bytes, checksum: 28a3a9a1ed16462d01e40ff411a01564 (MD5)
Previous issue date: 2014 / Neste trabalho estabeleceremos as definições das funções de Green em mecânica estatística e suas propriedades básicas. Estas funções dependem duplamente do tempo e da temperatura. Isto pode ser observado por meio de suas definições, onde aparecem os valores médios dos produtos de operadores. Neste caso a média é feita sobre o ensemble grão-canônico. Os operadores envolvidos nestas funções satisfazem a equação de movimento de Heisenberg, o que nos permite descrever as equações de evolução para as funções de Green. Por meio da representação espectral das funções de correlação temporal, que é feita através da introdução de uma transformada de Fourier para mudar o sistema do espaço dos tempos para o espaço das frequências, podemos obter as representações espectrais para as funções de Green retardada, avançada e causal. Por último, faremos o uso da função de Green retardada para descrever a condutividade elétrica de um sistema de elétrons submetido a um campo elétrico externo dependente de tempo, em outras palavras, descreveremos o tensor de condutividade elétrica em termos da função de Green retardada e, por último, calcularemos a condutividade elétrica de um sistema de elétrons e fônons.
|
9 |
Influência de parâmetros moleculares em funções de correlação temporal na dinâmica de solvatação mecânica / Influence of molecular parameters on time correlations functions of mechanical solvation dynamicsMartins, Marcio Marques January 2004 (has links)
No presente trabalho descrevemos nossos resultados relativos à investigação da dinâmica de solvatação mecânica por meio de simulações por dinâmica molecular, respeitando o regime da resposta linear, em sistemas-modelo de argônio líquido com um soluto monoatômico ou diatômico dissolvido. Estudamos sistematicamente a influência dos parâmetros moleculares dos solutos (tamanho, polarizabilidade) e da densidade frente a vários modelos de solvatação. Funções de Correlação Temporal da Energia de Solvatação foram calculadas com relação à correlações de n-corpos (n = 2; 3) distinguindo interações repulsivas e atrativas para ambos os sistemas líquidos. Também obtivemos segundas derivadas temporais dessas funções referindo-se à parcelas translacionais, rotacionais e roto-translacionais na solução do diatômico. Encontramos que funções de correlação temporal coletivas podem ser razoavelmente bem aproximadas por correlações binárias a densidades baixas e, a densidades altas, correlações ternárias tornam-se mais importantes produzindo um descorrelacionamento mais rápido das funções coletivas devido a efeitos de cancelamento parciais. As funções de correlação para interações repulsivas e atrativas exibem comportamentos dinâmicos independentes do modelo de solvatação devido a fatores de escalonamento linear que afetam apenas as amplitudes das dessas funções de correlação temporal. Em geral, os sistemas com grau de liberdade rotacional apresentam tempos de correlação mais curtos para a dinâmica coletiva e tempos de correlação mais longos para as funções binárias e ternárias. Finalmente, esse estudo mostra que os sistemas contendo o diatômico relaxam-se predominantemente por mecanismos translacionais binários em modelos de solvatação envolvendo alterações apenas na polarizabilidade do soluto, e por mecanismos rotacionais atrativos binários em modelos envolvendo alterações no comprimento de ligação. / In the present work, we describe our results concerning our molecular dynamics investigation of the mechanical solvation dynamics within the linear response regime in model systems composed by liquid argon with a monoatomic or diatomic solute. The effect of molecular parameters (size, polarizability) and density has been elucidated for various solvation models. Time Correlation Functions for the solvation energy were calculated and separated into n-body (n = 2; 3) contributions distinguishing repulsive and attractive interactions in both liquid systems. In addition, we computed second time derivatives of these functions in order to describe translational, rotational, and roto-translational portions in the solutions containing the diatomics. We found that collective time correlation functions are well described by binary correlations at low liquid densities and, at high densities, ternary correlations become more important producing faster decaying collective time correlation functions due to partial cancellation effects. The repulsive and attractive time correlation functions exhibit a dynamic behavior that is independent on the solvation model due to linear scaling factors that only affect the absolute amplitudes of these functions. In general, the systems involving a rotational degree of freedom furnish smaller correlation times for the collective solvation dynamics, but stronger correlated two-body and three-body terms. Finally, this study shows that the solvation dynamics for the solution containing the diatomics relaxes predominatly by binary translational mechanisms when solvation models involving changes only in the polarizability parameter are considered. Binary attractive rotational mechanism become important in models with changes in the bond length.
|
10 |
FunÃÃes de Green em mecÃnica estatÃsticaMÃrcio de Melo Freire 16 July 2014 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho estabeleceremos as definiÃÃes das funÃÃes de Green em mecÃnica estatÃstica e suas propriedades bÃsicas. Estas funÃÃes dependem duplamente do tempo e da temperatura. Isto pode ser observado por meio de suas definiÃÃes, onde aparecem os valores mÃdios dos produtos de operadores. Neste caso a mÃdia à feita sobre o ensemble grÃo-canÃnico. Os operadores envolvidos nestas funÃÃes satisfazem a equaÃÃo de movimento de Heisenberg, o que nos permite descrever as equaÃÃes de evoluÃÃo para as funÃÃes de Green. Por meio da representaÃÃo espectral das funÃÃes de correlaÃÃo temporal, que à feita atravÃs da introduÃÃo de uma transformada de Fourier para mudar o sistema do espaÃo dos tempos para o espaÃo das frequÃncias, podemos obter as representaÃÃes espectrais para as funÃÃes de Green retardada, avanÃada e causal. Por Ãltimo, faremos o uso da funÃÃo de Green retardada para descrever a condutividade elÃtrica de um sistema de elÃtrons submetido a um campo elÃtrico externo dependente de tempo, em outras palavras, descreveremos o tensor de condutividade elÃtrica em termos da funÃÃo de Green retardada e, por Ãltimo, calcularemos a condutividade elÃtrica de um sistema de elÃtrons e fÃnons.
|
Page generated in 0.0819 seconds