• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical methods for certain large, complex data challenges

Li, Jun 15 November 2018 (has links)
Big data concerns large-volume, complex, growing data sets, and it provides us opportunities as well as challenges. This thesis focuses on statistical methods for several specific large, complex data challenges - each involving representation of data with complex format, utilization of complicated information, and/or intensive computational cost. The first problem we work on is hypothesis testing for multilayer network data, motivated by an example in computational biology. We show how to represent the complex structure of a multilayer network as a single data point within the space of supra-Laplacians and then develop a central limit theorem and hypothesis testing theories for multilayer networks in that space. We develop both global and local testing strategies for mean comparison and investigate sample size requirements. The methods were applied to the motivating computational biology example and compared with the classic Gene Set Enrichment Analysis(GSEA). More biological insights are found in this comparison. The second problem is the source detection problem in epidemiology, which is one of the most important issues for control of epidemics. Ideally, we want to locate the sources based on all history data. However, this is often infeasible, because the history data is complex, high-dimensional and cannot be fully observed. Epidemiologists have recognized the crucial role of human mobility as an important proxy to a complete history, but little in the literature to date uses this information for source detection. We recast the source detection problem as identifying a relevant mixture component in a multivariate Gaussian mixture model. Human mobility within a stochastic PDE model is used to calibrate the parameters. The capability of our method is demonstrated in the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province. The third problem is about multivariate time series imputation, which is a classic problem in statistics. To address the common problem of low signal-to-noise ratio in high-dimensional multivariate time series, we propose models based on state-space models which provide more precise inference of missing values by clustering multivariate time series components in a nonparametric way. The models are suitable for large-scale time series due to their efficient parameter estimation. / 2019-05-15T00:00:00Z
2

Imputation and Generation of Multidimensional Market Data

Wall, Tobias, Titus, Jacob January 2021 (has links)
Market risk is one of the most prevailing risks to which financial institutions are exposed. The most popular approach in quantifying market risk is through Value at Risk. Organisations and regulators often require a long historical horizon of the affecting financial variables to estimate the risk exposures. A long horizon stresses the completeness of the available data; something risk applications need to handle.  The goal of this thesis is to evaluate and propose methods to impute financial time series. The performance of the methods will be measured with respect to both price-, and risk metric replication. Two different use cases are evaluated; missing values randomly place in the time series and consecutively missing values at the end-point of a time series. In total, there are five models applied to each use case, respectively.  For the first use case, the results show that all models perform better than the naive approach. The Lasso model lowered the price replication error by 35% compared to the naive model. The result from use case two is ambiguous. Still, we can conclude that all models performed better than the naive model concerning risk metric replication. In general, all models systemically underestimated the downstream risk metrics, implying that they failed to replicate the fat-tailed property of the price movement.

Page generated in 0.1308 seconds