• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Evaluation of Time series Databases based on Energy Consumption

Sanaboyina, Tulasi Priyanka January 2016 (has links)
The vision of the future Internet of Things is posing new challenges due to gigabytes of data being generated everyday by millions of sensors, actuators, RFID tags, and other devices. As the volume of data is growing dramatically, so is the demand for performance enhancement. When it comes to this big data problem, much attention has been given to cloud computing and virtualization for their almost unlimited resource capacity, flexible resource allocation and management, and distributed processing ability that promise high scalability and availability. On the other hand, the variety of types and nature of data is continuously increasing. Almost without exception, data centers supporting cloud based services are monitored for performance and security and the resulting monitoring data needs to be stored somewhere. Similarly, billions of sensors that are scattered throughout the world are pumping out huge amount of data, which is handled by a database. Typically, the monitoring data consists time series, that is numbers indexed by time. To handle this type of time series data a distributed time series database is needed.   Nowadays, many database systems are available but it is difficult to use them for storing and managing large volumes of time series data. Monitoring large amounts of periodic data would be better done using a database optimized for storing time series data. The traditional and dominant relational database systems have been questioned whether they can still be the best choice for current systems with all the new requirements. Choosing an appropriate database for storing huge amounts of time series data is not trivial as one must take into account different aspects such as manageability, scalability and extensibility. During the last years NoSQL databases have been developed to address the needs of tremendous performance, reliability and horizontal scalability. NoSQL time series databases (TSDBs) have risen to combine valuable NoSQL properties with characteristics of time series data from a variety of use-cases.   In the same way that performance has been central to systems evaluation, energy-efficiency is quickly growing in importance for minimizing IT costs. In this thesis, we compared the performance of two NoSQL distributed time series databases, OpenTSDB and InfluxDB, based on the energy consumed by them in different scenarios, using the same set of machines and the same data. We evaluated the amount of energy consumed by each database on single host and multiple hosts, as the databases compared are distributed time series databases. Individual analysis and comparative analysis is done between the databases. In this report we present the results of this study and the performance of these databases based on energy consumption.
2

Prestandajämförelse mellan krypterade och okrypterade tidsseriedatabaser med IoT-baserad temperatur- och geopositionsdata / Performance Comparison between Encrypted and Unencrypted Time Series Databases with IoT-Based Temperature and Geolocation Data

Uzunel, Sinem, Xu, Joanna January 2024 (has links)
Internet of Things (IoT) är en växande teknologi som spelar en allt större roll i samhället. Den innefattar ett nätverk av internetanslutna enheter som samlar in och utbyter data. Samtidigt som IoT växer uppstår utmaningar kring hantering av stora datamängder och säkerhetsaspekter. Företaget Softhouse står inför utmaningen att välja en effektiv tidsseriedatabas för hantering av temperatur- och geopositionsdata från värmesystem i privata bostäder, där både prestanda och dataintegritet via kryptering är av stor vikt. Detta examensarbete har därför utfört en prestandajämförelse mellan AWSTimestream och InfluxDB, där olika tester har använts för att mäta exekveringstiden för inskrivning av sensordata och databasfrågor. Jämförelsen inkluderar AWS Timestream i krypterad form mot InfluxDB i dess AWS-molnversion i krypterad form, samt InfluxDB AWS i krypterad form mot InfluxDB i okrypterad form. Syftet med studien var att ge riktlinjer för valet av tidsseriedatabaser med fokus på prestanda och säkerhetsaspekter, inklusivekryptering. Studien undersökte även hur valet av rätt databas påverkar företag som Softhouse, både i termer av kvantitativa och kvalitativa fördelar, samt att ge en bedömning av kostnaderna. Resultatet visade att InfluxDB i dess AWS-molnversion generellt presterade bättre än AWS Timestream och InfluxDB i dess standardversion. Det fanns tydliga skillnader i prestanda mellan AWS Timestream och InfluxDB i dess AWS-molnversion, men inte lika tydliga skillnader i prestanda mellan InfluxDB i dess AWS-molnversion och standardversionen. Med hänsyn till både prestanda och säkerhet framstår InfluxDB i dess AWS-molnversion som det mest lämpliga alternativet. Det är emellertid av stor vikt att ta kostnadaspekten i beaktande, då AWS Timestream visar sig vara avsevärt mer kostnadseffektivt än InfluxDB. / The Internet of Things (IoT) is a growing technology that plays an increasingly significant role in society. It encompasses a network of internet-connected devices that collect and exchange data. As IoT continues to expand, challenges arise regarding the management of large volumes of data and security aspects. The company Softhouse faces the challenge of choosing an efficient time-series database for handling temperature and geoposition data from heating systems in homes, where both performance and data integrity through encryption are of great importance. Therefore, this thesis has conducted a performance comparison between AWS Timestream and InfluxDB, using various tests to measure the execution times for data ingestion of sensor data and database queries. The comparison includes AWS Timestream in encrypted form versus InfluxDB in its AWS cloud version in encrypted form, as well as InfluxDB AWS in encrypted form versus InfluxDB in unencrypted form. The aim of the study was to provide guidelines for the selection of time-series databases with a focus on performance and security aspects, including encryption. The study also explored how the choice of the right database affects companies like Softhouse, both in terms of quantitative and qualitative benefits, and provided an assessment of costs. The results showed that InfluxDB in its AWS cloud version generally outperformed AWS Timestream and InfluxDB in its standard version. There were clear performance differences between AWS Timestream and InfluxDB in its AWS cloud version, but not as pronounced differences in performance between InfluxDB in itsAWS cloud version and the standard version. Considering both performance and security, InfluxDB in its AWS cloud version appears to be the most suitable option. However, it is crucial to consider the cost aspect, as AWS Timestream proves to be significantly more cost-effective than InfluxDB.

Page generated in 0.0889 seconds