• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De certaines analogies entre le temps et l'espace pour la propagation des ondes : les miroirs et cristaux temporels / On certain analogies between time and space in wave propagation : time mirrors and time crystals

Bacot, Vincent 09 January 2017 (has links)
Cet ouvrage présente de nouveaux aspects de l’analogie entre temps et espace pour les ondes, à travers des concepts de contrôle temporel de la propagation des ondes, qui peuvent être interprétés comme la transposition au domaine temporel d’opérations standard du domaine spatial. Toute l’étendue de cette analogie est étudiée dans le cadre deux phénomènes ondulatoires bien connus (dans leurs versions spatiales), et dont nous montrons qu’ils sont étroitement liés : la réflexion des ondes et leur transformation par un cristal. En particulier, il est démontré expérimentalement que l’analogue temporel de la réflexion par un miroir génère une onde retournée temporellement, c’est-à-dire dont l’évolution temporelle est inversée. Une variante monofréquentielle de ce miroir temporel instantané, qui possède des liens étroits avec le concept de conjugaison de phase utilisé pour le retournement temporel d'ondes monochromatiques en optique, est également étudiée. Nous montrons que la modulation temporelle périodique du milieu mise en jeu dans ces expériences constitue l'équivalent temporel d'un cristal pour les ondes et étudions les propriétés générales des ondes dans ces milieux. Nous cherchons naturellement à sonder les limites de ces analogies spatiotemporelles, dont, de toute évidence, le principe de causalité est un élément majeur. Les phénomènes étudiés sont généraux et communs à toutes les ondes classiques, gouvernées en général par l’équation de d’Alembert ou par d’autres équations similaires. Les ondes à la surface d’un liquide sont utilisées comme système ondulatoire modèle dans nos expériences / This work presents new aspects of the analogy between time and space in wave phenomena, through new concepts of time control of wave propagation which can be interpreted as the transposition onto the time domain of standard spatial operations. The depth of this analogy is thoroughly studied in the framework of two well-known wave phenomena: reflection of waves on a mirror and their transformation by a crystal. More precisely, we experimentally demonstrate that the time analog of reflection by a mirror generates a time reverse wave that is whose time evolution is inverted. A monofrequency variant of this instantaneous time mirror, which has strong connections to the concept of wave phase conjugation used for time reversing monochromatic waves in optics, is also studied. We show that the periodic time modulation of the medium involved in the latter experiments constitutes the time equivalent of a crystal for waves and we study the general properties of waves in such media. We address of course the issue of the limits of theses space time analogies, of which, the principle of causality is evidently a major constituent. The phenomena studied here are general and apply to all classical waves (usually governed by d’Alembert’s equation or by similar ones). Waves at the surface of a liquid are used as a model wave system in our experiments / Die Universalitat der klassischen Wellenphanomenen lasst sich weitgehend durch die d’Alembertsche Struktur der Wellengleichungen beschreiben. In letzterer spielen die Zeit- und Raumvariabeln eine ahnliche Rolle. Wir betrachten in diesem Werk diese bekannte Analogie unter einem neuen Licht, indem wir neue Konzepte der Zeitkontrolle von der Wellenpropagation introduzieren, die als Transposition zum Bereich der Zeit von standarden Wellenphanomen des Raumes interpretiert werden konnen, wobei die raumliche Variation der Eigenschaften des Mediums, die sie bestimmen, durch eine zeitliche ersetzt wird. Wir bringen den experimentellen Beweis der Relevanz dieses Ansatzes, wobei wir die Wellen an der Oberflache einer Flussigkeit als Modelwellensystem verwenden und zeigen durch theoretische Erkenntnisse, dass er auf alle Wellensysteme generalisiert werden kann, die durch eine Wellengleichung beschrieben wird, deren 10 Struktur die der d’Alembertschen Gleichung ahnelt. Die ganze Reichweite dieser Analogie wird im Rahmen zweier langst bekannten Wellenphanomenen (in deren raumlichen Version), von denen wir zeigen, dass sie eng verbunden sind : die Spiegelung einer Welle und deren Umwandlung durch einen Kristal. Das Equivalent eines Spiegels fuhrt zur augenblicklichen Erscheinung aus dem gesammten Raum einer zeitumgekehrten Welle, das heist einer Wellenform, derer zeitliche Entwicklung im Vergleich zu der originellen Welle umgekehrt ist. Eine Einzelfrequenzvariante dieses augenblicklichen Zeitspiegels wird auch vorgestellt, die enge Verbindungen mit dem fur die Zeitumkehr monochromatischer Wellen angewendeten Konzept der optischen "Phase Conjugation" (Phasenkonjugierung) besitzt. Wir zeigen, dass die dazugehorige periodische Zeitmodulation des Mediums das zeitliche Equivalent eines Kristals fur die Welle bildet, und wir studieren die generellen Eigenschaften der Wellen in solchen Medien. Wir versuchen, die Grenzen dieser raumzeitlichen Analogien zu erkundigen, in derer Bestimmung selbstverstandlich das Kausalitatsprinzip eine masgebliche Rolle spielt, und die interessanten Unterschiede zwischen den vorgestellten Konzepten und deren raumlichen Pendants offenbaren / La universalidad de los fenomenos ondulatorios clasicos es ampliamente descrita por la estructura de la ecuacion de d’Alembert. En esta ecuacion, las variables espaciales y temporales desempenan un papel similar. En esa obra, revisitamos esta analogia bien conocida a traves de nuevos conceptos de control temporal de la propagacion de las ondas, quienes pueden ser interpretados como transposiciones de fenomenos espaciales estandartes al ambito temporal, en los cuales las variaciones espaciales de las propiedades del medio son reemplazadas por las correspondientes variaciones temporales. Hacemos la prueba, usando ondas a la superficie de un liquido, de la relevancia de este enfoque y mostramos teoreticamente su generalizacion a todo tipo de onda clasica, es decir gobernada por una ecuacion cuya estructura es similar a la de d’Alembert. Toda la extension de esta analogia queda estudiada en el cuadro de los dos fenomenos clasicos (en sus versiones espaciales) que son la reflexion de una onda sobre un espejo y su trasformacion en un cristal. Ademas, mostramos que los dos son intimamente relacionados. El equivalente temporal de un espejo produje instantaneamente desde el medio entero una onda retornada en el tiempo, es decir cuya evolucion temporal es invertida comparado a la onda inicial. Una variante monofrecuencial de este espejo queda estudiada tambien. Posee estrechos vinculos con el concepto de Phase Conjugation (conjugacion de fase), usado en Optica para hacer retornamiento temporal de ondas monocromaticas. Mostramos que la modulacion temporal implicada constituye el equivalente de un cristal para las ondas et estudiamos las caracteristicas generales de ondas en estos medios. Sondeamos los limites de esas analogias espaciotemporales de cuyos obviamente el principio de causalidad es un elemento mayor y que revelan diferencias interesantes entre los conceptos presentados y sus equivalentes espaciales / L’universalita dei fenomeni ondulatori classici e in larga misura descritta dalla struttura dell’equazione di d’Alembert. In quest’equazione, le variabili spaziali e temporali svolgono ruoli analoghi. Nell’opera seguente rivisitiamo questa ben nota analogia introducendo nuovi concetti sul controllo temporale della propagazione delle onde. Questi concetti possono essere interpretati come trasposizione di fenomeni ondulatori spaziali standard nell’ambito temporale, sostituendo le variazioni spaziali delle proprieta del mezzo con le variazioni temporali corrispondenti. Usando delle onde sulla superficie di un liquido come modello fisico, facciamo fede della rilevanza di quell’approccio e mostriamo teoricamente la generalizzazione a tutti i tipi di onde classiche, governate da equazioni simili a quella di d’Alembert. Questa analogia viene studiata nell’ambito di due fenomeni ondulatori ben noti (nella loro versione spaziale) : la riflessione delle onde generata da un specchio e la loro trasformazione generata da un cristallo. Mostriamo inoltre che i due concetti sono intimamente vincolati. L’equivalente temporale di un specchio porta alla generazione in tutto lo spazio di un’onda restituita nel tempo, vale a dire un’onda di cui l’evoluzione temporale e invertita in relazione all’onda originale. In questa tesi viene presentata anche una variante monofrequenziale di questo specchio temporale istantaneo che possiede legami stretti con il concetto di coniugazione di fase usato in ottica per invertire nel tempo onde monocromatiche. Mostriamo in questo lavoro che la modulazione temporale periodica del mezzo in questione costituisce, per le onde, l’equivalente temporale di un cristallo e ne studiamo le proprieta generali. In questa tesi, cerchiamo di sondare i limiti dell’analogia spaziotemporale, di cui il principio di causalita ne e l’essenziale e che rivelano differenze interessanti tra i concetti presentati e i loro equivalenti spaziali
2

Hysteresis and Pattern Formation in Electronic Phase Transitions in Quantum Materials

Sayan Basak (9674882) 10 December 2020 (has links)
<div>We propose an order parameter theory of the quantum Hall nematic in high fractional Landau levels in terms of an Ising description. This new model solves a couple of extant problems in the literature: (1) The low-temperature behavior of the measured resistivity anisotropy is captured better by our model than previous theoretical treatments based on the electron nematic having XY symmetry. (2) Our model allows for the development of true long-range order at low temperature, consistent with the observation of anisotropic low-temperature transport.<br></div><div><div> We furthermore propose new experimental tests based on hysteresis that can distinguish whether any two-dimensional electron nematic is in the XY universality class (as previously proposed in high fractional Landau levels), or in the Ising universality class (as we propose). Given the growing interest in electron nematics in many materials, we expect our proposed test of universality class to be of broad interest.</div><div> </div><div> Whereas the XY model in two dimensions does not have a long-range ordered phase, the addition of uniaxial random field disorder induces a long-range ordered phase in which the spontaneous magnetization points perpendicular to the random field direction, via an order-by-disorder transition. We have shown that this spontaneous magnetization is robust against a rotating driving field, up to a critical driving field amplitude. Thus we have found evidence for a new non-equilibrium phase transition that was unknown before in this model. Moreover, we have discovered an incredible anomaly at this nonequilibrium phase transition: the critical region is accompanied by a cascade of period multiplication events. This physics is reminiscent of the period bifurcation cascade signaling the transition to chaos in nonlinear systems, and of the approach to the irreversibility transition in models of yield in amorphous solids~\cite{reichhardt-dahmen,leishangthem_yielding_2017}. This period multiplication cascade is surprising to be present in a statistical mechanics model, and suggests that the non-equilibrium transition as a function of driving field amplitude is part of a larger class of transitions in dynamical systems.</div><div> Moreover, we show that this multi-period behavior represents a new emergent classical discrete time-crystal, since the new period is robust against changes to initial conditions and low-temperature fluctuations over hundreds of driving period cycles.</div><div><br></div><div> We expect this work to be of broad interest, further encouraging cross-fertilization between the rapidly growing field of time-crystals with the well-established fields of nonequilibrium phase transitions and dynamical systems.</div><div> </div><div> Geometrical configurations gave us a better understanding of the multi-period behavior of the limit-cycles.</div><div> Moreover, surface probes are continually evolving and generating vast amounts of spatially resolved data of quantum materials, which reveal a lot of detail about the microscopic and macroscopic properties of the system. <br></div><div> Materials undergoing a transition between two distinct states, phase separate.</div><div> These phase-separated regions form intricate patterns on the observable surface, which can encode model-specific information, including interaction, dimensionality, and disorder. </div><div> While there are rigorous methods for understanding these patterns, they turn out to be time-consuming as well as requiring expertise. </div><div> We show that a well-tuned machine learning framework can decipher this information with minimal effort from the user.</div><div> We expect this to be widely used by the scientific community to fast-track comprehension of the underlying physics in these materials.</div><div><br></div></div>
3

Dynamics of Interacting Ultracold Atoms and Emergent Quantum States

Changyuan Lyu (10306484) 07 May 2021 (has links)
<p>The development of ultracold atom physics enables people to study fundamental questions in quantum mechanics within this highly-tunable platform. This dissertation focuses on several topics of the dynamical evolution of quantum systems.</p><p>Chapter 2 and 3 talk about Loschmidt echo, a simple quantity that reveals many hidden properties of a system’s time evolution. Chapter 2 looks for vanishing Loschmidt echo in the complex plane of time and the corresponding dynamical quantum phase transitions (DQPT) in the thermodynamic limit. For a two-site Bose-Hubbard model consisting of weakly interacting particles, DQPTs reside at the time scale inversely proportional to the interaction, where highly entangled pair condensates also show up. Chapter 3 discusses the revival of Loschmidt echo in a discrete time crystal, a Floquet system whose discrete temporal transition symmetry is spontaneously broken. We propose a new design and demonstrate its robustness against the fluctuations in the driving field. It can also be used in precision measurement to go beyond the Heisenberg limit. Experimental schemes are presented.</p><p>Out-of-time-order correlator (OTOC) is a more complicated variant of Loschmidt echo. Experimentally it requires reversing the time evolution. In Chapter 4, by exploiting the SU(1,1) symmetry of a weakly interacting BEC and connecting its quantum dynamics to a hyperbolic space, we obtain a geometric framework that enables experimentalists to manipulate the evolution with great freedom. Backward evolution is then realized effectively to measure OTOC of such SU(1,1) systems.</p><p>Chapter 5 discusses the decoherence of a spin impurity immersed in a spinor BEC. Our calculations show that by looking at the dynamics of the impurity’s reduced density matrix, the phase of the spinor BEC can be detected.</p>

Page generated in 0.0392 seconds