Spelling suggestions: "subject:"time varying graphs"" "subject:"lime varying graphs""
1 |
Social Network Analysis and Time Varying GraphsAfrasiabi Rad, Amir January 2016 (has links)
The thesis focuses on the social web and on the analysis of social networks with particular emphasis on their temporal aspects. Social networks are represented here by Time Varying Graphs (TVG), a general model for dynamic graphs borrowed from distributed computing.
In the first part of the thesis we focus on the temporal aspects of social networks. We develop various temporal centrality measures for TVGs including betweenness, closeness, and eigenvector centralities, which are well known in the context of static graphs. Unfortunately the computational complexities of these temporal centrality metrics are not comparable with their static counterparts. For example, the computation of betweenness becomes intractable in the dynamic setting. For this reason, approximation techniques will also be considered. We apply these temporal measures to two very different datasets, one in the context of knowledge mobilization in a small community of university researchers, the other in the context of Facebook commenting activities among a large number of web users. In both settings, we perform a temporal analysis so to understand the importance of the temporal factors in the dynamics of those networks and to detect nodes that act as “accelerators”.
In the second part of the thesis, we focus on a more standard static graph representation. We conduct a propagation study on YouTube datasets to understand and compare the propagation dynamics of two different types of users: subscribers and friends. Finally, we conclude the thesis with the proposal of a general framework to present, in a comprehensive model, the influence of the social web on e-commerce decision making.
|
2 |
Supporting device-to-device search and sharing of hyper-localized dataMichel, Jonas Reinhardt 08 September 2015 (has links)
Supporting emerging mobile applications in densely populated environments requires connecting mobile users and their devices with the surrounding digital landscape. Specifically, the volume of digitally-available data in such computing spaces presents an imminent need for expressive mechanisms that enable humans and applications to share and search for relevant information within their digitally accessible physical surroundings. Device-to-device communications will play a critical role in facilitating transparent access to proximate digital resources. A wide variety of approaches exist that support device-to-device dissemination and query-driven data access. Very few, however, capitalize on the contextual history of the shared data itself to distribute additional data or to guide queries. This dissertation presents Gander, an application substrate and mobile middleware designed to ease the burden associated with creating applications that require support for sharing and searching of hyper-localized data in situ. Gander employs a novel trajectory-driven model of spatiotemporal provenance that enriches shared data with its contextual history -- annotations that capture data's geospatial and causal history across a lifetime of device-to-device propagation. We demonstrate the value of spatiotemporal data provenance as both a tool for improving ad hoc routing performance and for driving complex application behavior. This dissertation discusses the design and implementation of Gander's middleware model, which abstracts away tedious implementation details by enabling developers to write high-level rules that govern when, where, and how data is distributed and to execute expressive queries across proximate digital resources. We evaluate Gander within several simulated large-scale environments and one real-world deployment on the UT Austin campus. The goal of this research is to provide formal constructs realized within a software framework that ease the software engineering challenges encountered during the design and deployment of several applications in emerging mobile environments. / text
|
3 |
Centralidade de tempo em grafos variantes no tempoCosta, Eduardo Chinelate 23 February 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-12T14:37:07Z
No. of bitstreams: 1
eduardochinelatecosta.pdf: 1021822 bytes, checksum: b72dff6cf071e8de1cb23f6cb7d27245 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:15:42Z (GMT) No. of bitstreams: 1
eduardochinelatecosta.pdf: 1021822 bytes, checksum: b72dff6cf071e8de1cb23f6cb7d27245 (MD5) / Made available in DSpace on 2016-01-25T17:15:42Z (GMT). No. of bitstreams: 1
eduardochinelatecosta.pdf: 1021822 bytes, checksum: b72dff6cf071e8de1cb23f6cb7d27245 (MD5)
Previous issue date: 2015-02-23 / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / Atualmente, há um grande interesse em investigar a dinâmica em Grafos Variantes no
Tempo (GVTs). Esses grafos contemplam a evolução temporal, tanto de nós, quanto de
arestas. Nesse cenário, de maneira similar a grafos estáticos, o conceito de centralidade
geralmente se refere a métricas que avaliam a importância relativa dos vértices. Entretanto,
GVTs possibilitam a avaliação da importância dos instantes de tempo (ou estados) de
um grafo ao longo de sua existência. Determinar instantes de tempo importantes nesse
contexto pode ter aplicações práticas fortes, sendo particularmente úteis para definir
melhores momentos para difusão, gerar modelos e prever o comportamento de GVTs.
Neste trabalho, nós definimos Centralidade de Tempo em Grafos Variantes no Tempo.
A centralidade de tempo avalia a importância relativa dos instantes de tempo. São
apresentadas duas métricas de centralidade de tempo voltadas a processos de difusão de
informação e uma métrica baseada na disposição das conexões da rede. As métricas foram
avaliadas em um conjunto de dados real. Os resultados mostram que os instantes de
tempo melhor classificados, de acordo com as métricas criadas, podem tornar o processo
de difusão mais rápido e eficiente. Comparado com uma escolha aleatória, o processo de
difusão iniciado nos instantes de tempo mais bem classificados pode ser até 2,5 vezes mais
rápido, e também pode atingir praticamente o dobro do número de nós na rede em alguns
casos. / Currently, there is a great interest in investigating dynamics in Time-Varying Graphs
(TVGs). These graphs contemplate the temporal evolution, both nodes and edges. In
this scenario, similar to static graphs, centrality usually refers to metrics that assess the
relative importance of vertices. However, in TVGs it is possible to assess the importance of
time instants (or states) of a graph throughout its existence. Determining important time
instants in this context may have strong practical applications and is particularly useful for
defining best times to spread, generate models and predict the behavior of TVGs. In this
paper, we define time centrality in Time-Varying Graphs. Time centrality evaluates the
relative importance of time instants. We present two time centrality metrics focused on
information dissemination processes and another based on layout of network connections..
We evaluate metrics we define relying in a real dataset from an hospital environment. Our
results show that the best classified time instants, according to created metrics, can make
a faster and more efficient diffusion process. Compared to a random choice, the diffusion
process starting at best rated time instants can up to 2.5 times faster, and it also can
reach almost double the number of nodes in the network in some cases.
|
4 |
Autour des groupes tolérants aux délais dans les flottes mobiles communicantes / On Delay-Tolerant Groups in Communicating Mobile FleetsBarjon, Matthieu 01 December 2016 (has links)
Parmi les évolutions majeures de l'informatique, nous distinguons l'émergence des technologies mobiles sans fil. Le développement actuel de ces technologies permet de réaliser des communications ad-hoc directes entre de nombreux types d'entités mobiles, comme des véhicules, des robots terrestres ou des drones. Dans un réseau de tels équipements, l'ensemble des liens de communication qui existe à un instant donné dépend des distances entre les entités et la topologie du réseau change continuellement lorsque les entités se déplacent. Les hypothèses habituelles sur la connexité du réseau n'ont pas leur place ici, néanmoins, une autre forme de connexité appelée connexité temporelle est souvent disponible à travers le temps et l'espace. L'objectif de cette thèse a été de développer des algorithmes pour les flottes d'appareils dans le cas des réseaux tolérant aux délais (DTN). De manière simplifiée, les réseaux tolérants aux délais sont des réseaux pour lesquels certaines parties peuvent se retrouver isolées pendant un moment sans que cela pose problème. Nous nous intéressons, en particulier, au cas où ces appareils sont organisés sous la forme de groupes, et où la notion de groupe elle même survit à ces déconnexions transitoires. Ainsi, une grande partie de la thèse s'articule autour de la notion des groupes tolérant aux délais (groupe DTN). Dans notre cas cet éloignement est limité dans le temps et nous parlons alors de "diamètre temporel borné" au sein du groupe. Le fait de borner le diamètre temporel du groupe lui permet de distinguer entre l'éloignement temporaire d'un noeud et sa perte définitive (crash ou autre). / Among the major developments in computer science, we distinguish the emergence of mobile wireless technologies. The current development of these technologies allows for direct ad-hoc communications between many types of mobile entities, such as vehicles, land robots or drones. In a network of such devices, the set of communication links that exists at a given instant depends upon the distances between the entities. As a result, the topology of the network changes continuously as the entities move. The common assumption on connectivity may not be relevant in this case, but another kind of connectivity called temporal connectivity is often alvailable over time and space. The goal of this thesis has been the development of algorithms for fleets of mobile devices in the case of delay-tolerant networks. In a simpler way, the delay-tolerant networks are networks where some parts can be isolated during a certain time without problems. We are interested, in particular, in the case where the devices are organised as groups, and where the notion of group itself survives to these deconnections. Hence, a big part of this thesis relates to the notion of delay-tolerant groups (DTN groups). In our case, these deconnections are limited in time and we speak of a "bounded temporal diameter" within the group. The fact of limiting the temporal diameter of the group enables it to distinguish between temporary deconnections and final loss (crash or other) of some nodes.
|
5 |
Modélisation spatio-temporelle du trafic routier en milieu urbain / Spatio-temporal modeling of urban road trafficOberoi, Kamaldeep Singh 18 November 2019 (has links)
Le domaine de la modélisation du trafic routier vise à comprendre son évolution. Dans les dernières années, plusieurs modèles du trafic ont été proposés dans l’objectif de géolocaliser les embouteillages au sein du trafic, détecter des motifs dans le trafic routier, estimer l’état du trafic etc. La plupart des modèles proposés considèrent le trafic routier en termes de ses constituants ou comme une entité agrégée en fonction de l’échelle choisie et expliquent l’évolution du trafic quantitativement en tenant compte des relations entre les variables de trafic comme le flot, la densité et la vitesse. Ces modèles décrivent le trafic en utilisant des données très précises acquises par différents capteurs. La précision des données rend son calcul coûteux en termes de ressources requises. Une des solutions à ce problème est la représentation qualitative du trafic routier qui réduit le nombre de ressources de traitement nécessaires. Puisque le trafic routier est un phénomène spatio-temporel, les modèles proposés pour représenter ce type de phénomène pourraient être appliqués dans le cas du trafic routier. Les modèles spatio-temporels, proposés par la communauté de l’Analyse Spatio-Temporelle, ont comme objectif la représentation d’un phénomène tant du point de vue qualitatif que quantitatif. Certains de ces modèles proposent une discrétisation des phénomènes modélisés en considérant un phénomène comme constitué d’entités. Appliquée au trafic routier, cette notion permet d’identifier différentes entités, comme les véhicules, les piétons, les bâtiments etc., qui le constituent. Ces entités influent sur l’évolution du trafic. Les modèles spatio-temporels qualitatifs définissent l’effet des différentes entités les unes sur les autres en terme de relations spatiales. L’évolution spatio-temporelle du phénomène modélisé est représenté par la variation temporelle de ces relations. La prise en compte des entités du trafic et des relations spatiales formalise une structure qui peut être représentée en utilisant un graphe, où les nœuds modélisent des entités et les arcs des relations spatiales. Par conséquent, l’évolution du trafic, modélisée via ce graphe, devient l’évolution du graphe et peut être représenté en terme de la variation de la structure du graphe ainsi que celle des attributs de ses nœuds et de ses arcs. Dans cette thèse, nous proposons une modélisation du trafic routier de ce type basée sur la théorie des graphes. Une des applications à la modélisation du trafic routier est la détection des motifs pertinents au sein du trafic. Dans les modèles du trafic existants, les motifs détectés sont statistiques et sont représentés en utilisant des caractéristiques numériques. Le modèle que nous pro posons dans cette thèse met en avant la structure représentant le trafic routier et peut donc être utilisé pour définir des motifs structurels du trafic qui prennent en compte des différentes entités du trafic et leurs relations. Ces motifs structurels sont sous-jacents à une modélisation sous forme de graphe dynamique. Dans cette thèse, nous proposons un algorithme pour détecter ces motifs structurels du trafic dans le graphe spatio-temporel représentant le trafic routier. Ce problème est formalisé comme celui de l’isomorphisme de sous-graphe pour des graphes dynamiques. L’algorithme proposé est évalué en fonction desdifférents paramètres de graphes. / For past several decades, researchers have been interested in understanding traffic evolution, hence, have proposed various traffic models to identify bottleneck locations where traffic congestion occurs, to detect traffic patterns, to predict traffic states etc. Most of the existing models consider traffic as many-particle system, describe it using different scales of representation and explain its evolution quantitatively by deducing relations between traffic variables like flow, density and speed. Such models are mainly focused on computing precise information about traffic using acquired traffic data. However, computation of such precise information requires more processing resources. A way to remedy this problem is to consider traffic evolution in qualitative terms which reduces the required number of processing resources. Since traffic is spatio-temporal in nature, the models which deal with spatio-temporal phenomenon can be applied in case of traffic. Such models represent spatio-temporal phenomenon from qualitative as well as quantitative standpoints. Depending on the intended application, some models are able to differentiate between various entities taking part in the phenomenon, which proves useful in case of traffic since different objects like vehicles, buildings, pedestrians, bicycles etc., directly affecting traffic evolution, can be included in traffic models. Qualitative spatio-temporal models consider the effects of different entities on each other in terms of spatial relations between them and spatio-temporal evolution of the modeled phenomenon is described in terms of variation in such relations over time. Considering different traffic constituents and spatial relations between them leads to the formation of a structure which can be abstracted using graph, whose nodes represent individual constituents and edges represent the corresponding spatial relations. As a result, the evolution of traffic, represented using graph, is described in terms of evolution of the graph itself, i. e. change in graph structure and attributes of nodes and edges, with time. In this thesis, we propose such a graph model to represent traffic. As mentioned above, one of the applications of existing traffic models is in detecting traffic patterns. However, since such models consider traffic quantitatively, in terms of acquired traffic data, the patterns detected using such models are statistical (a term employed by Pattern Recognition researchers) in the sense that they are represented using numerical description. Since graph-based traffic model proposed in this thesis represents the structure of traffic, it can be employed to redefine the meaning of traffic patterns from statistical to structural (also a term from Pattern Recognition community). Structural traffic patterns include different traffic constituents and their inter-links and are represented using time-varying graphs. An algorithm to detect a given structural traffic pattern in the spatio-temporal graph representing traffic is proposed in this thesis. It formalizes this problem as subgraph isomorphism for time-varying graphs. In the end, the performance of the algorithm is tested using various graph parameters.
|
6 |
Automatic classification of dynamic graphs / Classification automatique de graphes dynamiquesNeggaz, Mohammed Yessin 24 October 2016 (has links)
Les réseaux dynamiques sont constitués d’entités établissant des contacts les unes avec les autres dans le temps. Un défi majeur dans les réseaux dynamiques est de prédire les modèles de mobilité et de décider si l’évolution de la topologie satisfait aux exigences du succès d’un algorithme donné. Les types de dynamique résultant de ces réseaux sont variés en échelle et en nature. Par exemple,certains de ces réseaux restent connexes tout le temps; d’autres sont toujours déconnectés mais offrent toujours une sorte de connexité dans le temps et dans l’espace(connexité temporelle); d’autres sont connexes de manière récurrente, périodique,etc. Tous ces contextes peuvent être représentés sous forme de classes de graphes dynamiques correspondant à des conditions nécessaires et/ou suffisantes pour des problèmes ou algorithmes distribués donnés. Étant donné un graphe dynamique,une question naturelle est de savoir à quelles classes appartient ce graphe. Dans ce travail, nous apportons une contribution à l’automatisation de la classification de graphes dynamiques. Nous proposons des stratégies pour tester l’appartenance d’un graphe dynamique à une classe donnée et nous définissons un cadre générique pour le test de propriétés dans les graphes dynamiques. Nous explorons également le cas où aucune propriété sur le graphe n’est garantie, à travers l’étude du problème de maintien d’une forêt d’arbres couvrants dans un graphe dynamique. / Dynamic networks consist of entities making contact over time with one another. A major challenge in dynamic networks is to predict mobility patterns and decide whether the evolution of the topology satisfies requirements for the successof a given algorithm. The types of dynamics resulting from these networks are varied in scale and nature. For instance, some of these networks remain connected at all times; others are always disconnected but still offer some kind of connectivity over time and space (temporal connectivity); others are recurrently connected,periodic, etc. All of these contexts can be represented as dynamic graph classes corresponding to necessary or sufficient conditions for given distributed problems or algorithms. Given a dynamic graph, a natural question to ask is to which of the classes this graph belongs. In this work we provide a contribution to the automation of dynamic graphs classification. We provide strategies for testing membership of a dynamic graph to a given class and a generic framework to test properties in dynamic graphs. We also attempt to understand what can still be done in a context where no property on the graph is guaranteed through the distributed problem of maintaining a spanning forest in highly dynamic graphs.
|
Page generated in 0.0866 seconds