• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 29
  • 18
  • 13
  • 12
  • 12
  • 12
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 330
  • 330
  • 141
  • 59
  • 54
  • 47
  • 45
  • 45
  • 43
  • 40
  • 37
  • 37
  • 35
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

LED Excitation and Photomultiplier Tube Biasing and Gating Circuitry for Fluorescence Instrumentation

Fairbanks, Jerrie Vincent January 2015 (has links)
Fluorescence technologies have only begun exploiting the transient recording of lifetime-based signals and images for low nanosecond lifetimes, but the method has tremendous potential for scientific and medical applications. Low nanosecond lifetime recording in real-time can enable the tracking of metabolite concentrations in cells and tissues (e.g. cancerous tissues) without introducing foreign substances. It will also enable the tracking of reactive species (e.g. ozone) and intermediate/short-lived states in chemical reactions in the atmosphere. Current techniques all employ laser excitation, but LEDs can also be used which cause considerably less damage to live tissue. We have developed a high speed fluorescence prototype using high intensity LED pulses and novel PMT gating technology. Precision timing circuitry generates tunable width pulse signals which are driven through the LED using a comparator-based push-pull architecture. The timing circuitry also generates PMT gating pulses which are applied to the dynode chain via high voltage operational amplifiers. LED pulses with fall times (99%) as short as 2ns and PMT gating times (10% to 90%) of 3.6ns have been achieved. The prototype has been used to successfully measure the fluorescent lifetimes of Alexa Fluor 610X dye (1.7ns and 4.7ns) and riboflavin (4.5ns). Lifetimes of acridine orange were measured as follows: alone (2ns), in solution with ssDNA (3.7ns), in solution with dsDNA (5.8ns), and in solution with dsRNA (5.9ns). Finally, dsRNA was heated and allowed to cool revealing lifetimes that started at 3.7ns when hot and increased to nearly 5ns when cool.
72

Direct Observations of Scavenging Reactions of the Prehydrated Electron and OH Radicals by Femtosecond Time-Resolved Laser Spectroscopy

Ma, Yuhan 06 November 2014 (has links)
Radiotherapy is the major curative therapy for carcinogesis. Identifying the effective species that induce DNA damage under ionizing radiation holds the key to improve and advance radiotherapy. In a cellular environment, most of the radiation energy is absorbed by water in the cell. Traditionally, the major radicals resulting from the radiolysis of water are thought to be the hydroxyl radical (OH) and the hydrated electron, whereas the (OH) radical is considered as the major contributor to radiation-induced DNA damage. With the birth of femtosecond time-resolved laser spectroscopy, the precursor to the hydrated electron, the so-called prehydrated electron, has been directly observed. The prehydrated electrons are the excited states of the well-known hydrated electron in nature. Very recently, it was pointed out that the prehydrated electron is a reactive species capable of causing lethal DNA double strand breaks. Thus the reductive DNA damage is proposed as a new molecular pathway for radiation-induced DNA damage. Therefore, the reaction dynamics of the prehydrated electron is of great interest to unravel the exact mechanism of radiation-induced DNA damage. In order to study the action of the prehydrated electron (epre???) in biologically relevant reactions, additional compounds need to be applied to regulate the prehydrated electrons. Such compounds are electron scavengers. In this thesis, the ultrafast electron transfer reaction of epre??? with an electron scavenger potassium nitrate was first investigated using our state-of-the-art femtosecond time-resolved pump-probe laser spectroscopy (fs-TRLS). Quantitative scavenging efficiency is successfully obtained by measuring the reaction rate constant, which is determined to be kpre = (0.75 ?? 0.5)??10^13 M^???1s^???1. This value is two-orders larger than the reaction rate constant of ehyd??? with potassium nitrate k =9.7??10^9 M^???1s^???1, confirming the high reactivity of epre???. Moreover, to comparing effectiveness of the reductive DNA damage induced by the prehydrated electron to the oxidative DNA damage induced by OH radicals, OH radical scavengers are used to quench OH radicals, leaving the prehydrated electron as the only active species. However, no studies have ever investigated the reactions between OH radical scavengers and the prehydrated electron. Here we performed the first quantitative study on the scavenging reactions of epre??? with the well-known OH radical scavengers, isopropanol and dimethyl sulfoxide (DMSO). We present the first evidence of such scavenging reactions and determine the reaction rate constants, which are measured to be k = 3.3 ?? 0.5??10^11 M^???1s^???1 and 8.7 ?? 0.5??10^11 M???1s???1 for isopropanol and DMSO in PBS buffer, respectively.These values are much higher than the reaction rate constants of isopropanol with OH radicals and DMSO with OH radicals (kisopropanol+OH = 2??10^9 M^???1s^???1 and kDMSO+OH = 7??10^9 M^???1s^???1). Furthermore, the OH radical is an important species produced from radiolysis of water. Knowing its reaction dynamics and kinetics can facilitate the comparison between the oxidative DNA damage induced by OH radicals and the reductive DNA damage by prehydrated electrons. By using an OH radical scavenger KSCN, we are able to directly observe the reaction dynamics of the OH radical. In addition, knowing the relative yield ratio of OH radicals and the epre??? (r = [OH]/[epre???]) is necessary for the comparison of the effectiveness of epre??? and OH radicals at inducing DNA damage. In our study, a quantitative analysis of the relative yield ratio r using an OH radical scavenger KSCN was obtained. The relative yield ratio is determined to be r = [OH]/[epre???] = 2.8 ?? 0.4. Incorporating this value into our recent studies on reductive DNA damage, we find that in terms of single-strand breaks and double-strand breaks yields per radical, an epre??? is nearly three times as effective as an OH at inducing DNA damage under irradiation. Overall, the results obtained from this thesis provide important information for future studies of epre??? action in biologically relevant reactions.
73

Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation

Bhattacharjee, Rohit Ranjan 23 August 2013 (has links)
Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex is periodically re-initiated into an overdriven detonation following a transient Mach reflection process. Past researchers have identified mechanisms that can increase combustion rates and cause localized hot spot re-ignition behind the Mach shock. But due to the small length scales and stochastic behaviour of detonation waves, the important mechanisms that can lead to re-initiation into a detonation requires further clarification. If a detonation is allowed to diffract behind an obstacle, it can quench to form a de-coupled shock-flame complex and if allowed to form a Mach reflection, re-initiation of a detonation can occur. The use of this approach permits the study of re-initiation mechanisms reproducibly with relatively large length scales. The objective of this study is to experimentally elucidate the key mechanisms that can increase chemical reaction rates and sequentially lead to re-initiation of a de-coupled shock-flame complex into an overdriven detonation wave following a Mach reflection. All experiments were carried out in a thin rectangular channel using a stoichiometric mixture of oxy-methane. Three different types of obstacles were used - a half-cylinder, a roughness plate along with the half-cylinder and a full-cylinder. Schlieren visualization was achieved by using a Z-configuration setup, a high speed camera and a high intensity light source. Results indicate that forward jetting of the slip line behind the Mach stem can potentially increase combustion rates by entraining hot burned gas into unburned gas. Following ignition and jet entrainment, a detonation wave first appears along the Mach stem. The transverse wave can form a detonation wave due to rapid combustion of unburned gas which may be attributed to shock interaction with the unburned gas. Alternatively, the Kelvin-Helmholtz instability can produce vortices along the slipline that may lead to mixing between burned-unburned gases and potentially increase combustion rates near the transverse wave. However, the mechanism(s) that causes the transverse wave to re-initiate into a detonation wave remains to be satisfactorily resolved.
74

In-situ picosecond time-resolved probing of magnetization dynamics in polycrystalline ferromagnetic thin films

Rudge, Jonathan 31 August 2009 (has links)
Magnetization dynamics in polycrystalline Permalloy thin films were studied in-situ using a time-resolved magneto-optic Kerr effect microscope (TR-MOKE). The films, in thicknesses from 9 to 22 nm, were thermally evaporated in a high-vacuum (<10⁻⁸ mbar) environment. Two important dynamic parameters of the magnetization, the precessional frequency and effective damping constant α eff, are obtained from the picosecond time-resolved evolution of the magnetization after a magnetic field pulse excitation. For all film thicknesses investigated, the magnetization carried out precessional motion at a frequency of ~2 GHz. The effective damping constant α eff is extracted from the precessional decay time τ. The decay time is obtained by fitting the experimental time trace of the magnetization to a damped sine function of the form M(t)=Mo e -t/τ sin(ωt-φ), where ω is the angular frequency of the precession mode and φ is the initial phase of the precession. For the thinnest film investigated, α eff reaches the value of 0.32, considerably higher than any previously reported values. The physical origin of the increased magnetic damping is discussed in terms of the surface roughness induced extrinsic damping in magnetic thin films, but the experimentally found thickness-dependence of α eff, however, does not agree with the prediction. The discrepancy is attributed to the percolation of Permalloy islands into connected clusters occurring at the thickness of ~18 nm.
75

Magnetization dynamics in lithographically patterned Ni80Fe20/Ir20Mn80 exchange-biased square elements

Xu, Haitian 27 August 2012 (has links)
The magnetic properties and crystal texture of micron-sized, lithographically patterned ferromagnetic/antiferromagnetic (FM/AF) exchange-coupled elements supporting vortex remanent magnetization states were characterized using experimental and numerical modeling techniques. 10umx10um square elements consisting of Ni80Fe20/Ir20Mn80 bilayers prepared on silicon and glass substrates using e-beam lithography and magnetron sputtering were thermomagnetically annealed under various in-plane cooling fields to induce exchange bias. Longitudinal and time-resolved Kerr effect microscopy were employed to measure the quasi-static hysteresis and dynamic response, while X-ray diffraction analysis was used to probe their crystal texture under different deposition and substrate conditions. The FM layer was found to be critical for the development of the necessary texture and spin alignment in the AF for creating interfacial exchange-bias. The exchange-bias field was found to significantly alter the magnetic behavior of the samples, leading to the stabilization of the vortex structure and asymmetric hysteresis loop shift in the quasi-static regime, as well as precessional frequency reduction of the bottom domain in the dynamic regime. Numerical simulations showed good qualitative agreement with both experimental observations and existing literature, and revealed the origin of the precessional frequency reduction as the different spin-wave eigenmodes excited by different remanent magnetization states. / Graduate
76

Time-integrated and time-resolved optical studies of InGaN quantum dots

Robinson, James W. January 2005 (has links)
The construction of a high-resolution optical microscope system for micro-photoluminescence (µ-PL) spectroscopy is described, and a range of time-integrated and time-resolved experimental work on single InGaN quantum dots (QDs) is presented. Time-integrated measurements demonstrate the existence of InGaN QDs in three different samples via the presence of sharp exciton recombination lines in the µ-PL spectra. The narrowest peaks display a linewidth Γ of ~230 µeV, implying a decoherence time T2 ≥5.7 ps. Time-resolved measurements on exciton recombination lines from single self-assembled InGaN QDs reveal typical lifetimes of ~2.0 ns (which decrease with increasing temperature), while typical lifetimes for excitons in single selectively-grown micropyramidal InGaN QDs are found to be ~0.4 ns. The shorter exciton recombination lifetime in selectively-grown QDs is believed to be due to a stronger coupling of these QDs to the underlying quantum well. Temporal fluctuations (on a timescale of seconds) in the energy, intensity and FWHM of µ-PL peaks arising from the recombination of excitons in single self-assembled InGaN QDs are observed. These are attributed to transient Stark shifts induced by a fluctuating local charge distribution as carriers become trapped in defect states in the vicinity of the QDs. Time-integrated power-dependent measurements are used to demonstrate the presence of biexciton states in single self-assembled InGaN QDs. The exciton–biexciton energy splitting is found to be ~41 meV, in agreement with values predicted by theoretical calculations. Time-resolved studies of the biexciton and exciton decay curves reveal a coupling as the exciton population is refilled by biexciton decays. The biexciton lifetime is found to be ~1.4 ns, compared to an exciton lifetime of ~1.0 ns. Lateral electric fields are applied to a single self-assembled InGaN QD using aluminium electrodes lithographically defined on the sample surface. Application of fields of the order of ~0.17 MVcm-1 is found to cause both a red-shift and a reduction in the intensity of the exciton recombination peak in the µ-PL spectrum.
77

Generation, Characterization and Application of the 3rd and 4th Harmonics of a Ti:sapphire Femtosecond Laser

Wright, Peter 25 January 2012 (has links)
Femtosecond time-resolved photoelectron spectroscopy (fsTRPES) experiments have been used to study the photoelectron energy spectra of simple molecules since the 1980’s. Analysis of these spectra provides information about the ultrafast internal conversion dynamics of the parent ions. However, ultraviolet pulses must be used for these pump-probe experiments in order to ionize the molecules. Since current solid state lasers, such as the Ti:sapphire laser, typically produce pulses centered at 800nm, it is necessary to generate UV pulses with nonlinear frequency mixing techniques. I therefore constructed an optical setup to generate the 3rd and 4th harmonics, at 266.7nm and 200nm, respectively, of a Ti:sapphire (Ti:sa) chirped-pulse amplified (CPA) laser system that produces 35fs pulses centered at 800nm. Thin Beta-Barium Borate (β-BaB2O4 or BBO) crystals were chosen to achieve a compromise between short pulse durations and reasonable conversion efficiencies, since ultrashort pulses are quite susceptible to broadening from group velocity dispersion (GVD). Output energies of around 11μJ and 230nJ were measured for the 266.7nm and 200nm pulses, respectively. The transform limits of the 3rd and 4th harmonic pulse lengths were calculated from their measured spectral widths. We found that the 266.7nm bandwidth was large enough to support sub-30fs pulses, and due to cutting at the lower-wavelength end of the 200nm spectrum, we calculated an upper limit of 38fs. The pulses were compressed with pairs of CaF2 prisms to compensate for dispersion introduced by transmissive optics. Two-photon absorption (TPA) intensity autocorrelations revealed fully compressed pulse lengths of 36 ± 2 fs and 42 ± 4 fs for the 3rd and 4th harmonics, respectively.
78

Time-resolved resonance raman and density functional theory studies of selected arylnitrenium ions and their reactions with guanosine derivatives and aryl azides

Xue, Jiadan. January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Includes bibliographical references (leaves 140-147) Also available in print.
79

Φασματοσκοπία χρονικής ανάλυσης και διφωτονικής απορρόφησης οργανικών ενώσεων παράγωγων της βενζοδισθιαζόλης

Κοτσιάς, Δημήτριος 26 April 2012 (has links)
Στην παρούσα μεταπτυχιακή αυτή εργασία μελετήσαμε την συμπεριφορά για πρώτη φορά ενώσεων που είχαν σαν βάση την βενζοδισθιαζόλη. Συγκεκριμένα οι ενώσεις αυτές μελετήθηκαν με την χρήση των τεχνικών της φασματοσκοπίας διφωτονικής απορρόφησης της φασματοσκοπίας σταθερής κατάστασης και της φασματοσκοπίας φθορισμού χρονικής ανάλυσης. Αρχικά όσον αφορά την φασματοσκοπία διφωτονικής απορρόφησης, μπορέσαμε να οδηγηθούμε στα εξής συμπεράσματα: οι καλύτερες ενώσεις που παρουσιάζουν αρκετά μεγάλη διφωτονική απορρόφηση είναι τα γραμμικά μόρια (PK-439 και PK-452) σε σχέση με τα U-shaped μόρια με μέγιστη ενεργό διατομή ΔΦΑ ~2000GM. Επιπλέον παρατηρήσαμε ότι η χρήση της βενζοδισθιαζόλης σαν κεντρικός πυρήνας προκαλεί σημαντική αύξηση της διφωτονικής απορρόφησης, σε σχέση με την βενζοθιαζόλη. Τέλος, με την τεχνική της φασματοσκοπίας φθορισμού χρονικής ανάλυσης μπορέσαμε να οδηγηθούμε σε κάποιες διαπιστώσεις: συγκεκριμένα παρατηρήσαμε ότι όσο το μήκος κύματος καταγραφής μεγαλώνει, τόσο οι καμπύλες αποδιέγερσης γίνονται πιο αργές. Ακόμα διαπιστώσαμε ότι από την σύγκριση μορίων στο μήκος κύματος του μεγίστου, σε εκείνα τα μόρια που αποδιεγείρονται γρήγορα, ευνοούνται οι μη-ακτινοβολητικές διεργασίες και ταυτόχρονα παρουσιάζουν μικρή ενεργό διατομή ΔΦΑ. / --
80

Numerical methods for time-resolved quantum nanoelectronics / Méthodes numériques pour la nanoélectronique quantique résolue en temps

Weston, Joseph 26 September 2016 (has links)
De récents progrès dans la nanoélectronique quantique ont donné lieu à denouvelles expériences avec des sources cohérentes d'électrons unique. Lorsqu'undispositif électronique quantique est manipulé sur une échelle de temps pluscourte que le temps de vol caractéristique d'un électron à travers ledispositif, toute une gamme de possibilités qui sont conceptuellement nouvellesdeviennent possible. Pour traiter de telles situations physiques, des avancéescorrespondantes sont nécessaires dans les techniques de simulation, pour aiderà comprendre, ainsi qu'à concevoir, la prochaine génération d'expériences dansce domaine.Les techniques les plus avancées pour simuler ce genre de physique nécessitentun temps de calcul qui croît de linéairement avec la taille dusystème, mais de manière quadratique avec la durée simulée.Ceci est particulièrement problématique pour les cas où un électron restedans le dispositif pendant une durée beaucoup plus longue que le temps devol balistique. Dans cette thèse on propose d'améliorer un algorithmeexistant, basé sur des fonctions d'onde, pour traiter le transport quantiquerésolu en temps dont le temps de calcul croît linéairement avec la taille du système ainsique la durée simulée. Par la suite on exploite cet algorithme pour étudierplusieurs systèmes physiques intéressants. En particulier on trouve quel'application d'un train d'impulsions de tension à un interféromètre à électronspeut stabiliser la modification dynamique du schéma d'interférence.On exploite cet effet pour faire de la spectroscopied'états d'Andreev et de Majorana existant dans des structure hybridessupraconducteur-nanofil.Les algorithmes numériques sont implémentés en tant qu'extension du logicielde transport quantique Kwant. Cette implémentation est utilisée pour tousles résultats numériques présentés dans la thèse, ainsi que d'autres projetsde recherche couvrants une grande gamme de physique: effet Hall quantique,isolants topologiques de Floquet, interféromètres de type Fabry-Pérot, etjonctions supraconductrices. / Recent technical progress in the field of quantum nanoelectronics have lead toexciting new experiments involving coherent single electron sources.When quantum electronic devices are manipulated on time scales shorterthan the characteristic time of flight of electrons through the device, a wholeclass of conceptually new possibilities become available. In order totreat such physical situations, corresponding advances in numerical techniquesand their software implementation are required both as a tool to aidunderstanding, and also to help when designing the next generation ofexperiments in this domain.Recent advances in numerical methods have lead to techniques for which thecomputation times scales linearly with the system volume, but as thesquare of the simulation time desired. This is particularly problematicfor cases where the characteristic dwell time of electrons in the centraldevice is much longer than the ballistic time of flight. Here, we proposean improvement to an existing wavefunction based algorithm fortreating time-resolved quantum transport which scales linearly in both thesystem volume and desired simulation time. We use this technique tostudy a number of interesting physical cases. In particular we find that theapplication of a train of voltage pulses to an electronic interferometercan be used to stabilise the dynamical modification of the interferencethat was recently proposed. We use this to perform spectroscopy on Majoranaand Andreev resonances in hybrid superconductor-nanowire structures.The numerical algorithms are implemented as an extension to the Kwantquantum transport software. This implementation is used for all the numericalresults presented here, in addition to other work, covering a wide varietyof physical applications: quantum Hall effect, Floquet topological insulators,Fabry-Perot interferometers and superconducting junction.

Page generated in 0.045 seconds