Spelling suggestions: "subject:"iip over stability"" "subject:"imip over stability""
1 |
Tip-over stability analysis for mobile boom cranes with single- and double-pendulum payloadsFujioka, Daichi 08 July 2010 (has links)
This thesis investigated a tip-over stability of mobile boom cranes with swinging payloads. Base and crane motion presents a tip-over problem. Attaching complex payloads further complicates the problem. They study began with a single-pendulum payload to analyze a tip-over stability characteristics under different conditions. A simple tip-over prediction model was developed with a goal of limiting a computational cost to a minimum. The stability was characterized by a tip-over stability margin method. The crane's tip-over stability was also represented by the maximum possible payload it can carry throughout the workspace. In a static stability analysis, mobile boom crane was assumed to be stationary, thus with no payload swing. The study provided basic understanding on the relationship between tip-over stability and boom configuration. In a pseudo-dynamic stability analysis, the method incorporated payload swing into the analysis by adding estimated maximum payload swing due to motions. To estimate the angles, differential equations of motions of payload swings were derived. The thesis extended the study to a double-pendulum payload. The maximum swing angles estimated in the single-pendulum case were directly applied to the double-pendulum case. To validate the analytical methods, a full dynamic multi-body simulation model of a mobile boom crane was developed. The predictions from the previous analysis were verified by the simulation results. The prediction model and the analytical methods in the thesis provide a significant tool for practical application of tip-over stability analysis on mobile boom cranes. The experimental results increase the confidence of the study's accuracy.
|
2 |
Control of robotic mobile manipulators : application to civil engineering / Commande de manipulateurs mobiles robotisés : application au génie civilMohy El Dine, Kamal 23 May 2019 (has links)
Malgré le progrès de l'automatisation industrielle, les solutions robotiques ne sont pas encore couramment utilisées dans le secteur du génie civil. Plus spécifiquement, les tâches de ponçage, telles que le désamiantage, sont toujours effectuées par des opérateurs humains utilisant des outils électriques et hydrauliques classiques. Cependant, avec la diminution du coût relatif des machines par rapport au travail humain et les réglementations sanitaires strictes applicables à des travaux aussi risqués, les robots deviennent progressivement des alternatives crédibles pour automatiser ces tâches et remplacer les humains.Dans cette thèse, des nouvelles approches de contrôle de ponçage de surface sont élaborées. Le premier contrôleur est un contrôleur hybride position-force avec poignet conforme. Il est composé de 3 boucles de commande, force, position et admittance. La commutation entre les commandes pourrait créer des discontinuités, ce qui a été résolu en proposant une commande de transition. Dans ce contrôleur, la force de choc est réduite par la commande de transition proposée entre les modes espace libre et contact. Le second contrôleur est basé sur un modèle de ponçage développé et un contrôleur hybride adaptatif position-vitesse-force. Les contrôleurs sont validés expérimentalement sur un bras robotique à 7 degrés de liberté équipé d'une caméra et d'un capteur de force-couple. Les résultats expérimentaux montrent de bonnes performances et les contrôleurs sont prometteurs. De plus, une nouvelle approche pour contrôler la stabilité des manipulateurs mobiles en temps réel est présentée. Le contrôleur est basé sur le « zero moment point », il a été testé dans des simulations et il a été capable de maintenir activement la stabilité de basculement du manipulateur mobile tout en se déplaçant. En outre, les incertitudes liées à la modélisation et aux capteurs sont prises en compte dans les contrôleurs mentionnés où des observateurs sont proposés.Les détails du développement et de l'évaluation des différents contrôleurs proposés sont présentés, leurs mérites et leurs limites sont discutés et des travaux futurs sont suggérés. / Despite the advancements in industrial automation, robotic solutions are not yet commonly used in the civil engineering sector. More specifically, grinding tasks such as asbestos removal, are still performed by human operators using conventional electrical and hydraulic tools. However, with the decrease in the relative cost of machinery with respect to human labor and with the strict health regulations on such risky jobs, robots are progressively becoming credible alternatives to automate these tasks and replace humans.In this thesis, novel surface grinding control approaches are elaborated. The first controller is based on hybrid position-force controller with compliant wrist and a smooth switching strategy. In this controller, the impact force is reduced by the proposed smooth switching between free space and contact modes. The second controller is based on a developed grinding model and an adaptive hybrid position-velocity-force controller. The controllers are validated experimentally on a 7-degrees-of-freedom robotic arm equipped with a camera and a force-torque sensor. The experimental results show good performances and the controllers are promising. Additionally, a new approach for controlling the stability of mobile manipulators in real time is presented. The controller is based on zero moment point, it is tested in simulations and it was able to actively maintain the tip-over stability of the mobile manipulator while moving. Moreover, the modeling and sensors uncertainties are taken into account in the mentioned controllers where observers are proposed. The details of the development and evaluation of the several proposed controllers are presented, their merits and limitations are discussed and future works are suggested.
|
Page generated in 0.0607 seconds