Spelling suggestions: "subject:"fire"" "subject:"dire""
81 |
Design of a Portable Tire Test Rig and Vehicle Roll-Over Stability ControlFox, Derek Martin 21 January 2010 (has links)
Vehicle modeling and simulation have fast become the easiest and cheapest method for vehicle testing. No longer do multiple, intensive, physical tests need be performed to analyze the performance parameters that one wishes to validate. One component of the vehicle simulation that is crucial to the correctness of the result is the tire. Simulations that are run by a computer can be run many times faster than a real test could be performed, so the cost and complexity of the testing is reduced. A computer simulation is also less likely to have human errors introduced with the caveat that the data input into the model and simulation is accurate, or as accurate as one would like their results to be. Simulation can lead to real tests, or back up tests already performed. The repeatability of testing is a non-issue as well.
Tire models are the groundwork for vehicle simulations and accurate results cannot be conceived without an accurate model. The reason is that all of the forces transmitted to and from the vehicle to the ground must occur at the tire contact patches. This presents the problem of obtaining a tire model. Tire companies do not readily give out tire data since the tire industry is still as much "black art" as it is science. For tire data one must begin with a testing apparatus. The test rig must be accurate and must have been validated before results can be used.
This thesis presents the process of the design and construction of a portable tire test rig. It then will discuss tire testing procedures and validation techniques. The resulting data shows good correlation between test data and known tire test data from flat track testing provided by a tire manufacturer. Then, a simple rollover study of a military truck will be compiled in TruckSim. Lastly, a control method for the rollover case will be designed and implemented. The results of the roll control simulation are positive. The study shows an increase in dynamic roll stability due to the implementation of the control algorithm. / Master of Science
|
82 |
Design and Qualification of a Test Fixture to Experimentally Determine Global Tire Force PropertiesCauthen, Rea Kimbrell III 03 April 2014 (has links)
The advent of finite element methods has changed the tire industry's design process over the past three decades. Analyses, previously impractical using analytical methods and physically limited by experimental methods, can now be performed using computational methods. This decreases the cost and time associated with bringing a new design to the marketplace; however some physical testing is still required to validate the models.
The design, fabrication, installation, and operation of a tire, suspension, and chassis test fixture (TiSCTeF) is detailed as part of this study. This fixture will support the validation of effective, parametric finite element models currently under development, as well as the design and testing of suspension and chassis components for the Virginia Tech Formula SAE team. The fixture is designed to use the Formula SAE race car as the test platform. Initially, the fixture is capable of performing static load-deflection and free-rolling tire tests. Provision has been made in the design for incremental upgrades to support cornering tests and additional instrumentation.
An initial load-deflection test has proven that the fixture is capable of creating reproducible data sets. Specific recommendations are made concerning the improvement of data quality for future tests.
This study also presents a process for analyzing existing tire cornering data and eliminating anomalies to improve the effectiveness of normalization techniques found in the literature. The process is shown to collapse tire cornering data, which is partially ill- conditioned, onto master curves that consistently display the effect of inclination angle and tire inflation pressure on tire response. / Master of Science
|
83 |
Finite Element Modeling Of Tire-Terrain Dynamic Interaction For Full Vehicle Simulation ApplicationsTaheri, Shahyar 03 July 2014 (has links)
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of dynamic events which are of importance. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a threedimensional finite element model (FEM) of the 16 inch TMPT Tire has been developed using the commercial software package ABAQUS.
The purpose of this study is to investigate tire transient dynamic behavior for various inputs. The process of running dynamic FE tire simulations starts by statically inflating and loading the tire using an implicit method with refined mesh in the contact patch. Then, by using the "result transfer" option in ABAQUS, final state vectors are used as initial conditions for subsequent simulations. Using this sequence of loading steps helps increase the efficiency of the code. The validation of the model is performed in two stages. First, tire mode shapes and associated natural frequencies and damping values are compared with the experimental data. Second, a series of transient dynamic simulations are performed using an explicit method with a fine mesh around the circumference of the tire. Finally, the FEM model results are filtered to eliminate the numerical noise, and their correlation with the test data is investigated. Moreover, the peak values and time shifts associated with spindle forces as a function of normal load are studied. The results show that the tire dynamic response is autonomous. / Master of Science
|
84 |
Real-Time Implementation of Road Surface Classification using Intelligent TiresSubramanian, Chidambaram 14 June 2019 (has links)
The growth of the automobile Industry in the past 50 years is radical. The development of chassis control systems have grown drastically due to the demand for safer, faster and more comfortable vehicles. For example, the invention of Anti-lock Braking System (ABS) has resulted in saving more than a million lives since its adaptation while also allowing the vehicles to commute faster. As we move into the autonomous vehicles era, demand for additional information about tire-road interaction to improve the performance of the onboard chassis control systems, is high. This is due to the fact that the interaction between the tire and the road surface determines the stability boundary limits of the vehicles. In this research, a real-time system to classify the road surface into five major categories was developed. The five surfaces include Dry Asphalt, Wet Asphalt, Snow, and Ice and dry Concrete. tri-axial accelerometers were placed on the inner liner of the tires. An advanced signal processing technique was utilized along with a machine learning model to classify the road surfaces. The instrumented Volkswagen Jetta with intelligent tires was retrofitted with new instrumentation for collecting data and evaluating the performance of the developed real-time system. A comprehensive study on road surface classification was performed in order to determine the features of the classification algorithm. Performance of the real-time system is discussed in details and compared with offline results. / Master of Science / The automobile industry has been improving road transportation safety over the past 50 years. While we enter the autonomous vehicles era, the safety of the vehicle is of primary concern. In order to get the autonomous vehicles to production, we will have to improve the on board vehicle control systems to adapt to all surfaces. Gaining more accurate information about the tire and road interaction will help in improving the control systems. Tires have always been considered a passive element of the vehicle. However, more recently, the idea of “tire as a sensor” has surfaced and has become one of the major research thrusts in tire as well as vehicle companies. The intelligent tire research at the Center for Tire Research (CenTiRe) begun in 2010 and has been going strong. In this work, we have developed a classification algorithm to classify the road surfaces in real-time based on acceleration measured inside the tire. The information regarding the road surface would be highly beneficial for the developing new control strategies, automate service vehicles and aid surface prediction in autonomous vehicles.
|
85 |
Experimental Investigation of the Tractive Performance of an Instrumented Off Road Tire in a Soft Soil TerrainNaranjo, Scott David 10 July 2013 (has links)
The main goal of this study is to improve the understanding of the interaction between a pneumatic tire and deformable terrain. A design of experiments has been implemented, that gives insight into the effect of individual tire and soil parameters, specifically wheel slip, normal load, inflation pres-sure, and soil compaction, as well as into the effect of combinations of such parameters on the tire and soil behavior. The results of such test data is exceedingly relevant, providing significant infor-mation to tire design for tire manufacturers, to users for operating conditions selection, as well as providing modeling parameters for tire models. Moreover, experimental investigation of tire-soil interaction provides validation data for tire models operating under similar conditions. In support of the validation of a soft soil tire model currently being developed at Virginia Tech under the auspices of the Automotive Research Center, experimental work has been performed on a low-speed, indoor single-wheel tester built to investigate studies in terramechanics. The terramechanics rig provides a well-controlled environment to assure repeatable testing conditions and void vehicle component ef-fects. The test tire for the rig is instrumented with a wireless sensory system that measures tire de-flection at the contact patch; combining this system with other instruments of the rig allows accurate estimations of wheel sinkage. A methodical soil preparation procedure has rendered great data to analyze several relations, such as the drawbar pull and the sinkage dependency on slip. The data col-lected indicated that, when looking at the effect of individual parameters, by increasing the soil com-paction, the normal load, and by decreasing the inflation pressure will result in a higher normalized drawbar pull. A higher normal load under all conditions consistently lowered the max tire sinkage depth. The sinkage has increased dramatically with the slip ratio, growing threefold larger at high slip (70-90%) when compared to lower slip (0-5%) ratios. / Master of Science
|
86 |
Development and Validation of a Tool for In-Plane Antilock Braking System (ABS) SimulationsKhanse, Karan Rajiv 08 September 2015 (has links)
Automotive and Tire companies spend extensive amounts of time and money to tune their products through prototype testing at dedicated test facilities. This is mainly due to the limitations in the simulation capabilities that exist today. With greater competence in simulation, comes more control over designs in the initial stages, which in turn lowers the demand on the expensive stage of tuning. The work presented, aims at taking today's simulation capabilities a step forward by integrating models that are best developed in different software interfaces. An in-plane rigid ring model is used to understand the transient response of tires to various high frequency events such as Anti-Lock Braking and short wavelength road disturbances. A rule based ABS model performs the high frequency braking operation. The tire and ABS models have been created in the Matlab-Simulink environment. The vehicle model has been developed in CarSim. The models developed in Simulink have been integrated with the vehicle model in CarSim, in the form of a design tool that can be used by tire as well as vehicle designers for further tuning of the vehicle functional performances as they relate to in-line braking scenarios. Outdoor validation tests were performed to obtain data from a vehicle that was measured on a suspension parameter measuring machine (SPMM) in order to complement this design tool. The results of the objective tests performed have been discussed and the correlations and variations with respect to the simulation results have been analyzed. / Master of Science
|
87 |
Estimation of vertical load on a tire from contact patch length and its use in vehicle stability controlDhasarathy, Deepak 30 June 2010 (has links)
The vertical load on a moving tire was estimated by using accelerometers attached to the inner liner of a tire. The acceleration signal was processed to obtain the contact patch length created by the tire on the road surface. Then an appropriate equation relating the patch length to the vertical load is used to calculate the load. In order to obtain the needed data, tests were performed on a flat-track test machine at the Goodyear Innovation Center in Akron, Ohio; tests were also conducted on the road using a trailer setup at the Intelligent Transportation Laboratory in Danville, Virginia. During the tests, a number of different loads were applied; the tire-wheel setup was run at different speeds with the tire inflated to two different pressures. Tests were also conducted with a camber applied to the wheel. An algorithm was developed to estimate load using the collected data.
It was then shown how the estimated load could be used in a control algorithm that applies a suitable control input to maintain the yaw stability of a moving vehicle. A two degree of freedom bicycle model was used for developing the control strategy. A linear quadratic regulator (LQR) was designed for the purpose of controlling the yaw rate and maintaining vehicle stability. / Master of Science
|
88 |
Optimal Vehicle Path Generator Using Optimization MethodsRamanata, Peeroon Pete 24 April 1998 (has links)
This research explores the idea of developing an optimal path generator that can be used in conjunction with a feedback steering controller to automate track testing experiment. This study specifically concentrates on applying optimization concepts to generate paths that meet two separate objective functions; minimum time and maximum tire forces.
A three-degree-of freedom vehicle model is used to approximate the handling dynamics of the vehicle. Inputs into the vehicle model are steering angle and longitudinal force at the tire. These two variables approximate two requirements that are essential in operating a vehicle. The Third order Runge-Kutta integration routine is used to integrate vehicle dynamics equations of motion. The Optimization Toolbox of Matlab is used to evaluate the optimization algorithm. The vehicle is constrained with a series of conditions, includes, a travel within the boundaries of the track, traction force limitations at the tire, vehicle speed, and steering.
The simulation results show that the optimization applied to vehicle dynamics can be useful in designing an automated track testing system. The optimal path generator can be used to develop meaningful test paths on existing test tracks. This study can be used to generate an accelerated tire wear test path, perform parametric study of suspension geometry design using vehicle dynamics handling test data, and to increase repeatability in generating track testing results.
<i> Vita removed at author's request. GMc 3/13/2013</i> / Master of Science
|
89 |
Influência da estrutura ímpar em pneus de lonas cruzadas (\'cross-ply\'). / Influence of an odd structure in cross ply tires.Zucato, Igor 21 November 2006 (has links)
O pneu é o único vínculo entre o veículo e o solo, é ele que transmite toda a potência e carga, e garante a dirigibilidade e condução do automóvel. A estrutura resistente de um pneu é um dos pontos de maior importância para o rendimento, tipo de aplicação e segurança. E conhecê-la é condição primária para o projeto. Pneus convencionais, via de regra, apresentam uma estrutura par de lonas cruzadas (cross-ply), dispostas em ângulos opostos, menores que 90º. Este trabalho visa avaliar as influências de uma estrutura ímpar de lonas cruzadas, em pneus convencionais. Objetiva-se com isso uma redução na matéria prima e uma otimização no tempo de processo. As influências da estrutura ímpar foram verificadas através de uma análise de elementos finitos, examinando o andamento das tensões internas na carcaça do pneu e observando a geometria da região de contato pneu/solo. Verificou-se também a variação da uniformidade utilizando-se do ensaio SAE J332 em uma máquina Akron FD90. A utilização de uma estrutura ímpar, em pneus de lonas cruzadas, acarreta numa deformação na região de contato pneu/solo, devido ao desbalanceamento de tensões nos fios da carcaça, um aumento das componentes de ply-steer e uma variação de força lateral nas componentes dinâmicas avaliadas. A utilização de uma estrutura ímpar deve ser cuidadosamente selecionada dependendo da velocidade, severidade e condições de utilização. / The tire is the only bond between the vehicle and the ground, is it that transmits all the power and load, and guarantees the driven and conduction of the automobile. The resistant structure of a tire is one of the most important factors for the efficiency, type of application and security. Knowing these parameters is the primary condition to design a tire. Conventional tires, usually have a pair structure, made of crossed plies (cross-ply) in opposite angles lesser than 90º. The present work aim to evaluate the influence of an odd cross-ply structure, in conventional tires, looking forward to a material reduction and also an optimization on time process. The influence of an odd structure was evaluated through a finite element analysis, examining the cord stress at the tire carcass and the tire/ground contact region (foot-print). The variation of the uniformity was also verified through a SAE332 test did on Akron FD90 machine. It was observed that the use of an odd structure in cross-ply tires cause a tire/ground contact region deformation, because of the unbalance internal cord stress (at the carcass), and an increase of uniformities components (ply-steer and variation of lateral force). The use of an odd structure must be carefully selected, depending on the speed, severity and condition of use.
|
90 |
Flexible multibody dynamics approach for tire dynamics simulationYamashita, Hiroki 01 December 2016 (has links)
The objective of this study is to develop a high-fidelity physics-based flexible tire model that can be fully integrated into multibody dynamics computer algorithms for use in on-road and off-road vehicle dynamics simulation without ad-hoc co-simulation techniques. Despite the fact detailed finite element tire models using explicit finite element software have been widely utilized for structural design of tires by tire manufactures, it is recognized in the tire industry that existing state-of-the-art explicit finite element tire models are not capable of predicting the transient tire force characteristics accurately under severe vehicle maneuvering conditions due to the numerical instability that is essentially inevitable for explicit finite element procedures for severe loading scenarios and the lack of transient (dynamic) tire friction model suited for FE tire models. Furthermore, to integrate the deformable tire models into multibody full vehicle simulation, co-simulation technique could be an option for commercial software. However, there exist various challenges in co-simulation for the transient vehicle maneuvering simulation in terms of numerical stability and computational efficiency. The transient tire dynamics involves rapid changes in contact forces due to the abrupt braking and steering input, thus use of co-simulation requires very small step size to ensure the numerical stability and energy balance between two separate simulation using different solvers.
In order to address these essential and challenging issues on the high-fidelity flexible tire model suited for multibody vehicle dynamics simulation, a physics-based tire model using the flexible multibody dynamics approach is proposed in this study. To this end, a continuum mechanics based shear deformable laminated composite shell element is developed based on the finite element absolute nodal coordinate formulation for modeling the complex fiber reinforced rubber tire structure. The assumed natural strain (ANS) and enhanced assumed strain (EAS) approaches are introduced for alleviating element lockings exhibited in the element. Use of the concept of the absolute nodal coordinate formulation leads to various advantages for tire dynamics simulation in that (1) constant mass matrix can be obtained for fully nonlinear dynamics simulation; (2) exact modeling of rigid body motion is ensured when strains are zero; and (3) non-incremental solution procedure utilized in the general multibody dynamics computer algorithm can be directly applied without specialized updating schemes for finite rotations. Using the proposed shear deformable laminated composite shell element, a physics-based flexible tire model is developed. To account for the transient tire friction characteristics including the friction-induced hysteresis that appears in severe maneuvering conditions, the distributed parameter LuGre tire friction model is integrated into the flexible tire model. To this end, the contact patch predicted by the structural tire model is discretized into small strips across the tire width, and then each strip is further discretized into small elements to convert the partial differential equations of the LuGre tire friction model to the set of first-order ordinary differential equations. By doing so, the structural deformation of the flexible tire model and the LuGre tire friction force model are dynamically coupled in the final form of the equations, and these equations are integrated simultaneously forward in time at every time step.
Furthermore, a systematic and automated procedure for parameter identification of LuGre tire friction model is developed. Since several fitting parameters are introduced to account for the nonlinear friction characteristics, the correlation of the model parameters with physical quantities are not clear, making the parameter identification of the LuGre tire friction model difficult. In the procedure developed in this study, friction parameters in terms of slip-dependent friction characteristics and adhesion parameter are estimated separately, and then all the parameters are identified using the nonlinear least squares fitting. Furthermore, the modified friction characteristic curve function is proposed for wet road conditions, in which the linear decay in friction is exhibited in the large slip velocity range. It is shown that use of the proposed numerical procedure leads to an accurate prediction of the LuGre model parameters for measured tire force characteristics under various loading and speed conditions. Furthermore, the fundamental tire properties including the load-deflection curve, the contact patch lengths, contact pressure distributions, and natural frequencies are validated against the test data. Several numerical examples for hard braking and cornering simulation are presented to demonstrate capabilities of the physics-based flexible tire model developed in this study.
Finally, the physics-based flexible tire model is further extended for application to off-road mobility simulation. To this end, a locking-free 9-node brick element with the curvature coordinates at the center node is developed and justified for use in modeling a continuum soil with the capped Drucker-Prager failure criterion. Multiplicative finite strain plasticity theory is utilized to consider the large soil deformation exhibited in the tire/soil interaction simulation. In order to identify soil parameters including cohesion and friction angle, the triaxial soil test is conducted. Using the soil parameters identified including the plastic hardening parameters by the compression soil test, the continuum soil model developed is validated against the test data. Use of the high-fidelity physics-based tire/soil simulation model in off-road mobility simulation, however, leads to a very large computational model to consider a wide area of terrains. Thus, the computational cost dramatically increases as the size of the soil model increases. To address this issue, the component soil model is proposed such that soil elements far behind the tire can be removed from the equations of motion sequentially, and then new soil elements are added to the portion that the tire is heading to. That is, the soil behavior only in the vicinity of the rolling tire is solved in order to reduce the overall model dimensionality associated with the finite element soil model. It is shown that use of the component soil model leads to a significant reduction in computational time while ensuring the accuracy, making the use of the physics-based deformable tire/soil simulation capability feasible in off-road mobility simulation.
|
Page generated in 0.0283 seconds