• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of deformability of ridges on interface shear strength

Guzman, Carlos Julio, 1984- 21 December 2010 (has links)
Tire bales have become an innovative and cost effective fill material that can be used for the construction of geotechnical structures, like embankments for highway projects. The mechanical and physical properties they present allow them to be suitable for this type of structures, as long as they are provided with an appropriate drainage system. Stability of these structures is controlled by the interface shear strength existing in the contact surfaces between the bales. However, the tire bale has a jagged, uneven and highly variable surface and it presents a number of irregular tire ridges with random dimensions that are difficult to quantify. Due to the flexibility of these ridges, deformation of the interface occurs when a horizontal shear load is applied, and following this deformation the actual displacement of the interface takes place. Freilich (2009) performed large scale tests in the field and in the laboratory to observe the behavior of the whole tire bale structure, which is composed of the tire bale mass and the tire bale interface. Due to the irregular and highly variable surface of the tire bale, the deformations that occur on the ridges along the interface cannot be directly measured and quantified. Following similar concepts of some rock mechanic models, Freilich characterized the tire ridge interface using three parameters and came up with a model. Using these parameters, an ideal interface was constructed where the variability was reduced by incorporating a known geometry, and it can still be characterized in the same manner as that for the tire bale interface. Loads, deformations and displacements occurring along the interface were measured and recorded. From this data, shear strength parameters are defined and incorporated into Freilich’s tire ridge interface model that is used to predict the geometric and mechanical behavior of the irregular ridges controlling the interface shear strength. The behavior predicted from the model is then compared to the recorded data representing the actual geometric and mechanical behavior of the interface with known geometry, where the deformations on the asperities are approximated. This comparison verifies that the consideration of the flexibility from the tire ridges is not entirely described by the tire ridge interface model. Therefore a possible modification, based on the observations recorded, could be found. / text
2

Mechanical and physical characterization of tire bales

Freilich, Brian Jeremy 05 November 2012 (has links)
Tire bales are a suitable construction material for conditions which require a lightweight material with high permeability and strength. Although several tire bale case histories have been reported in the literature, only limited material properties of the bales are available. Determining the mechanical and physical properties of the tire bales is necessary for the proper design and construction of future tire bale structures. The development and results from a series of large scale laboratory and field test procedures, used to determine the mechanical and physical characteristics of a tire bale structure, are provided in this dissertation. A tire bale structure, as compared to the individual tire bale, is defined as two or more tire bales stacked upon each other resulting in an interface contact between layers of the tire bales. Results from the test programs indicate that the interface between the tire bales controls the strength and compressibility of the bale structure. The strength of the interface was characterized utilizing a large scale direct shear test, which was modified to include the effects of moisture, soil infill and stress orientation on the interface strength. Interface shear stresses were used to define shear strength parameters for the different tire bale interfaces. The compressibility of the tire bale structure was characterized utilizing a large scale vertical compression test. The influence of the individual tire bale geometry on strength and compressibility was determined by conducting the large scale tests on two bale types, the standard block bale and the standard cylinder bale. A tire ridge interface model was developed to represent the physical characteristics of the tire bales that control the strength and deformations along the interface. Tensions within the baling wires were measured during the direct shear and compression tests using strain gauges attached to the baling wires. A tension meter was also developed so that the baling wire tensions could be determined without damaging the tire bale and baling wires. A destructive expansion pressure test was used at the conclusion of the research program to determine the pressures the tire bale exerts on the surrounding structure after wire breakage. / text

Page generated in 0.0478 seconds