• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scaffolds fabricated by three-dimensional plotting for bone tissue engineering and regeneration / Herstellung von Scaffolds für das Tissue Engineering und Regeneration von Knochen durch dreidimensionales Plotten

Luo, Yongxiang 14 November 2013 (has links) (PDF)
In this thesis, several types of scaffolds composed of different materials and designed structures and functions were fabricated by 3D plotting under mild conditions (room temperature and without using any organic solvent). Broad biomaterials including inorganic (such as calcium phosphate cement and mesoporous bioglass), organic (such as alginate and gelatin) and composite materials were prepared into printable pastes to plot as 3D scaffolds for bone tissue engineering. Organic/inorganic biphasic and bipartite structure, core/shell alginate/nano-hydroxyapatite and hollow fiber structure were designed and realized. Scaffolds with multi functions including suitable mechanical properties, sustained drug/protein delivery and in vitro vascularization were achievable. 3D plotting provided great achievements in the field of tissue engineering by preparing advanced scaffolds, as well as by plotting cell/matrix constructs, and even complex tissues and organs.
2

Scaffolds fabricated by three-dimensional plotting for bone tissue engineering and regeneration

Luo, Yongxiang 26 September 2013 (has links)
In this thesis, several types of scaffolds composed of different materials and designed structures and functions were fabricated by 3D plotting under mild conditions (room temperature and without using any organic solvent). Broad biomaterials including inorganic (such as calcium phosphate cement and mesoporous bioglass), organic (such as alginate and gelatin) and composite materials were prepared into printable pastes to plot as 3D scaffolds for bone tissue engineering. Organic/inorganic biphasic and bipartite structure, core/shell alginate/nano-hydroxyapatite and hollow fiber structure were designed and realized. Scaffolds with multi functions including suitable mechanical properties, sustained drug/protein delivery and in vitro vascularization were achievable. 3D plotting provided great achievements in the field of tissue engineering by preparing advanced scaffolds, as well as by plotting cell/matrix constructs, and even complex tissues and organs.

Page generated in 0.0872 seconds