• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 169
  • 110
  • 31
  • 18
  • 14
  • 14
  • 14
  • 13
  • 11
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 418
  • 418
  • 106
  • 73
  • 68
  • 66
  • 60
  • 59
  • 50
  • 43
  • 43
  • 39
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Efeito da adição de oxigênio na estabilidade e metaestabilidade de fases em ligas Ti-Nb aplicadas como biomaterial / Effect of oxygen additions in the phase stability and metastability of Ti-Nb alloys applied as biomaterials

Taquire De la Cruz, Manolo Marcial 18 August 2018 (has links)
Orientador: Rubens Caram Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-18T19:15:30Z (GMT). No. of bitstreams: 1 TaquireDelaCruz_ManoloMarcial_M.pdf: 61740701 bytes, checksum: 1b0f2cfa983c44d13817437ff955e827 (MD5) Previous issue date: 2011 / Resumo: Em se tratando de biomateriais ortopédicos, as ligas de titânio tipo ß apresentam diversas vantagens em relação às ligas do tipo 'alfa' + ß. Ligas contendo elementos ß estabilizadores são mais interessantes em função da alta resistência mecânica específica, da elevada resistência à corrosão e da excelente biocompatibilidade. Em adição, essas ligas exibem baixo módulo de elasticidade, característica fundamental na fabricação de implantes ortopédicos. O objetivo deste trabalho é a avaliação da estabilidade e metaestabilidade de ligas de Ti tipo ß do sistema Ti-Nb com adições de oxigênio. Amostras com composições Ti-30Nb-xO e Ti-35Nb-xO (x =0,1; 0,25; 0,5) (% em peso) foram preparadas por fusão a arco voltaico, homogeneizadas quimicamente em altas temperaturas, forjadas a quente e finalmente, submetidas a diferentes taxas de resfriamento. Tais amostras foram caracterizadas em relação à microestrutura por meio de microscopia óptica e eletrônica de varredura e de difração de raios-X, enquanto o comportamento mecânico foi avaliado por meio de ensaios de dureza Vickers, de medidas de módulo de elasticidade por meio de técnicas acústicas e de nano-dureza usando a técnica de nano-indentação. Os resultados obtidos indicam que baixas taxas de resfriamento conduzem à microestrutura formada pelas fases 'alfa' e ß e eventualmente, com a precipitação da fase 'omega'. Por outro lado, altas taxas de resfriamento conduziram à formação da estrutura metaestável martensítica 'alfa'. À medida que o teor de oxigênio foi incrementado e sob resfriamento lento, obteve-se a precipitação acentuada de fase 'alfa'. Sob elevadas taxas de resfriamento, o aumento dos teores de O e Nb resultaram na estabilização da fase ß e na redução da fração volumétrica da fase metaestável 'alfa'. As medidas de módulo de elasticidade mostram que em amostras submetidas a baixas taxas de resfriamento, a adição de oxigênio levou ao aumento do módulo de elasticidade. Para todas as taxas de resfriamento estudadas, observou-se que a dureza elevou-se com o aumento do teor de oxigênio, o que está associado à formação de solução sólida intersticial e à precipitação acentuada da fase 'alfa'. / Abstract: In the case of orthopedic biomaterials, ß-type titanium alloys have several advantages compared to the 'alfa'+ß titanium alloys. Alloys containing ß-stabilizing elements are often interesting due to high mechanical strength, high corrosion resistance and superior biocompatibility. Furthermore, due to low elastic modulus, these alloys are promising candidate in the manufacturing of ortophedic implants. The main goal of this work is to study the phase stability and metastability in ß type Ti-Nb alloys with oxygen additions. Samples with concentrations Ti-30Nb-xO and Ti-35Nb-xO (x = 0,1; 0.25 and 0.5) (wt%) were prepared by using an arc melting furnace and homogenized chemically at high temperatures, hot forged and finally, submitted to different cooling rates. These samples were characterized in relation to their microstructure by applying optical microscopy and X-ray diffraction, while the mechanical behavior was evaluated by Vickers hardness tests and elastic modulus measurements using acoustic technique. These results indicate that low cooling rates lead to 'alfa' and ß phase formation and eventually, to 'omega' phase precipitation. On the other hand high cooling rates led to 'alfa' martensitic structure formation. For lower cooling rates, as the oxygen concentration increased, the volume fraction of 'alfa' precipitates increased. At higher cooling rates O and Nb additions had an effective role in enhancing the ß phase stability and in diminishing the volume fraction of 'alfa' martensite phase. It was found that samples submitted to lower cooling rates presented an increase in the elastic modulus values as the oxygen content was increased. It was possible to observe that, for all cooling rates applied, the hardness values increased as the oxygen content was increased. These results are associated with formation of interstitial solid solution and 'alfa' phase precipitation / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
282

Componentes com gradientes funcionais para aplicação em ortopedia obtidos por manufatura aditiva de ligas de titânio / Functional graded components for application in orthopedics obtained by additive manufacturing of titanium alloys

Lima, Dalton Daniel de, 1986- 31 July 2015 (has links)
Orientador: Rubens Caram Júnior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-28T12:00:08Z (GMT). No. of bitstreams: 1 Lima_DaltonDanielde_M.pdf: 2611996 bytes, checksum: 6f81a7094a8af1637dc4d3bda71dacd3 (MD5) Previous issue date: 2015 / Resumo: O uso de ligas do sistema Ti-Nb-Zr como biomaterial é promissor em razão de sua boa biocompatibilidade, alta resistência à corrosão, elevada resistência mecânica e baixo módulo de elasticidade. As propriedades mecânicas de ligas Ti-Nb-Zr podem ser manipuladas variando-se o teor de Nb e Zr no componente, o que é obtido aplicando-se o processo de manufatura aditiva LENS®. Tal processo é uma técnica inovadora e permite produzir componentes tridimensionais com gradientes de composição e consequentemente, com gradientes funcionais. Materiais com gradiente funcionais são exigidos, em alguns casos, no reparo de tecidos duros do corpo humano. Por exemplo, em placas de fixação de fratura óssea é interessante alto módulo de elasticidade em regiões próximas à fratura e baixo módulo de elasticidade em regiões adjacentes à fratura. O objetivo desse trabalho foi estudar, do ponto de vista metalúrgico, a possibilidade de se produzir materiais para aplicação ortopédica fabricados com ligas Ti-Nb-Zr com gradientes de composição aplicando-se o processo LENS®. Para isso foram produzidos lingotes medindo 12 x 12 x 55 mm, com extremidades com composições nominais de Ti-35Nb-10Zr (% em peso) (região de baixo módulo), a região central de Ti CP (região de alto módulo) e as regiões entre o centro e as extremidades, com composições intermediárias. Cada lingote foi cortado simetricamente no sentido longitudinal, resultando em duas amostras (placas). Uma amostra foi caracterizada no estado como solidificada e a outra, após tratamento térmico de solubilização a 1000 °C por 1 h e resfriada em água. A caracterização das amostras envolveu fluorescência de raios-X e análise de teor de O e N para determinação da composição. Microscopia eletrônica de varredura, difração de elétrons retroespalhados e difração de raios-X foram utilizadas para análise microestrutural. Nanoindentação, medida de microdureza Vickers e análise de módulo de elasticidade por ultrassom para análise do comportamento mecânico. Verificou-se que é possível obter materiais com gradientes funcionais pelo processo LENS® dentro do sistema Ti-Nb-Zr. As amostras apresentaram módulo de elasticidade variando entre 65 a 110 GPa ao longo de seu comprimento / Abstract: The use of Ti-Nb-Zr alloys system as biomaterial is promising due to its good biocompatibility, high corrosion resistance, high strength and low modulus of elasticity. The mechanical properties of Ti-Nb-Zr alloys can be manipulated varying the content of Nb and Zr in the component production. This variation is obtained by applying the additive manufacturing process LENS®. This process is a novel technique and allows the production of three-dimensional components with compositional gradients and hence with functional gradients. Functionally graded materials are required in some cases, for repair of hard tissues of human body. In bone fracture fixation plates, for example, is interesting that the closest fracture regions possess high Young's modulus while adjacent fracture regions low Young's modulus. The aim of this work was to study, of metallurgical point of view, the possibility of producing materials, for orthopedic application, manufactured with Ti-Nb-Zr alloys with composition gradients applying the LENS®. To this, ingots measuring 12 x 12 x 55 mm were produced. Its ends were produced with the nominal composition Ti-35Nb-10Zr (wt%) (low modulus region), the central region was produced with CP Ti (high modulus region) and the regions between the extremities and central, with intermediate composition. Each ingot was symmetrical cut in longitudinal way, resulting in two samples (plates). One sample was characterized as the solidified state and the other one, after solubilization heat treatment at 1000 °C for 1 h and cooled in water. The samples were characterized by X-rays fluorescence and analysis of O and N content for compositions determining. Scanning electron microscopy, electron backscattering diffraction and X-ray diffraction were used for microstructural analysis. Nanoindentation technique, Vickers microhardness measure and measurement of Young's modulus by ultrasound were used for mechanical properties analysis. It has been found that it is possible to obtain functional gradients materials by the LENS® process within Ti-Nb-Zr system. The samples had modulus ranging from 65 to 110 GPa along its length / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
283

Additive Manufacturing of Metastable Beta Titanium Alloys

Yannetta, Christopher James 08 1900 (has links)
Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.
284

Desenvolvimento e caracterização de novas ligas do sistema Ti-Ta-Zr para aplicações biomédicas /

Kuroda, Pedro Akira Bazaglia. January 2019 (has links)
Orientador: Carlos Roberto Grandini / Resumo: Titânio e suas ligas, atualmente, são utilizados como implantes por possuírem excelente resistência à corrosão e propriedades mecânicas mais adequadas que os implantes de aço inoxidável e de Co-Cr. A liga de titânio mais utilizada para aplicações biomédicas é a liga Ti-6Al-4V, porém estudos mostraram que os elementos vanádio e alumínio são elementos nocivos à saúde humana. Assim, para contornar este problema, novas ligas de titânio sem a presença desses elementos estão sendo estudadas. O objetivo desse trabalho foi preparar ligas do sistema Ti-25Ta-Zr (onde o teor de zircônio foi variado de 0 a 75% em peso), e analisar a influência do soluto substitucional zircônio na estrutura cristalina, microestrutura, microdureza, módulo de elasticidade e biocompatibilidade das ligas. Paralelamente, diversos tratamentos de recozimento, laminação e solubilização foram realizados com o intuito de modificar as fases, microestrutura e módulo de elasticidade dos materiais. A caracterização química dos materiais foi realizada por espectroscopia de energia dispersiva, espectrometria de emissão óptica por plasma acoplado indutivamente, análise de gases e medidas de densidade. A análise estrutural foi efetuada por difração de raios X. A análise microestrutural foi realizada por microscopia ótica, microscopia eletrônica de varredura e de transmissão. Uma análise preliminar das propriedades mecânicas da liga foi obtida por intermédio de medidas de microdureza Vickers e módulo de elasticidade dinâmic... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Titanium and alloys currently are used as implants possessing excellent corrosion resistance and mechanical properties more suited to stainless steel implants and Co-Cr. The titanium alloy used for most biomedical applications is Ti-6Al-4V, however studies showed that vanadium and aluminum are harmful to human health. The objective of this study was to prepare Ti-25Ta-Zr system alloys, where the zirconium content was varied from 0 to 75 % in weight, and to analyze the influence of zirconium substitutional solute in the structure, microstructure, hardness and elastic modulus. At the same time, several annealing, lamination and solubilization treatments were carried out to modify the phases, structures, microstructure and elastic modulus of the materials. The chemical characterization of materials was performed by energy-dispersion spectroscopy, inductively coupled plasma optical emission spectrometry, gas analysis, and density measurements. The structural analysis was performed by x-ray diffraction measurements. Microstructural analysis was performed by optical, scanning and transmission electron microscopy. To verify the initial biocompatibility of the alloys, cytotoxic tests were performed. A preliminary analysis of the mechanical properties of the alloy was obtained by means of microhardness and dynamic elastic modulus measurements. The chemical composition results showed that the samples produced are of good quality, close to proposed stoichiometry. The results showed the ... (Complete abstract click electronic access below) / Doutor
285

Optimalizace výroby dílu pro letecký průmysl / Optimisation of a part production for aircraft industry

Filipčík, Jiří January 2009 (has links)
This thesis deals with optimization of production of "Hold-down hinge hook" component, developed from difficult-to-cut titanium alloy Ti-6Al-4V. This work is focused on the material properties of the component, current research and optimization in titanium machinability sphere. Further it contains a part dedicated to the latest trends in development of cutting tools for machining of titanium alloys. This knowledge is furthermore used for the component production optimization in Frencken Brno s.r.o. company. This project continues with analysis of the component‘s current production technology and designs the way of elimination of production bottleneck. This change is presented by component‘s clamp jig, which decreases higher percentage of scrap due to the geometric complexity. This thesis further contains drawing and technological documentation needed for implementation of the improvement suggestions into the production. There was designed a new NC program. This project is accomplished with technical-economical evaluation.
286

Obrábění těžkoobrobitelných materiálů / Machining of difficult machinable materials

Perončík, Martin January 2010 (has links)
Diploma thesis is specialized to solving of problems machining of diffi-cult machinable materials. There is carried out the analysis of difficult machinable materials in term of chemical composition, physical and mechanical properties. In the following it deals with analysis of machining, specification of geometry, material of cutting tools and cutting conditions.
287

Development of new high performance Titanium alloys with Fe-addition for dental implants

Mohan, Prakash 13 July 2020 (has links)
[EN] Ti and its alloys are mostly used biomaterials due to its unique properties like (high corrosion resistance, low elastic modulus, high mechanical strength/ density and good biocompatibility). Ti β alloys based on the Ti-Mo alloy system shows unique properties to employ as biomaterials. Tiβ alloys have lower Young Modulus, shielding stress and lower bone reabsorption. This research aims to develop a new biomaterial for a dental implant. This research evaluates the addition of Zr and a small amount of Fe on the β-phase stability and the mechanical properties of Ti-Mo alloy to be employed for the medical applications. These alloys had been produced using two powder metallurgy (PM) techniques; first technique is elemental blending (EB) which had been selected because it enhanced the surface contact between the alloying element and Titanium (Ti) with a cost-effective route. The behavior of different Ti alloys composition was evaluated using this technique. Samples were uniaxial pressed at 600 MPa and sintered at 1250ºC. Second technique evaluated in this study was Mechanical alloying (MA). This technique has higher mixing energy than elemental blend which improves mechanical contact between different particles, and it helps diffusion during the sintering process. Samples were pressed at 600 MPa initially, and after evaluating mechanical properties, compaction pressure is changed to 900 MPa for a high green density of powders. Different mechanical tests and microstructural studies were performed for elemental blend (EB) samples and for mechanical alloying samples to ensure the properties suitable for biomedical applications. Different tests for MA are Fluidity test (suitable to know about the flow of the powder after milling cycle) and Granulometric Analysis (test is suitable for powder distribution analysis). Other tests are common like Archimedes test which is suitable for calculating the porosity of the sintered samples, Three-point bending test is suitable for knowing Bending strength of the sintered samples and to know energy conserved by the breaking samples, Ultrasonic test performed for knowing elastic modulus of the alloys, Hardness test performed for calculating the Vicker´s hardness of the alloy, SEM analysis performed to know about microstructure and EDX analysis(by which proper mixing of the alloying element with the central element would be known). EBSD (Electron Beam Scattered Diffraction) is also performed for more analysis about microstructure, grain size, mixing of different elements in alloys. EBSD is an excellent tool for microanalysis of the material. From the results section, Green density of the alloy, fluidity of the milled powder, Granulometry of the powder, sintered density of the alloy (From Archimedes test), bending strength and bending modulus of the alloy, Elastic modulus by Ultrasonic test, Microstructure of the alloy(By SEM and EBSD Analysis of the sintered part.) are determined. Green density for elemental blend alloys is in the range of (77.42- 78.11%) and for Mechanical alloying samples were (74.94-78.58%). Sintered density obtained by Archimedes' test for the elemental blend is in the range of (96.88- 98.74%). Bending strength obtained from three-point bending test is in range of (666-2161 MPa), and mechanical alloying is in range of (371-1597 MPa). From the high test, Determined Elastic modulus of the alloy is in range of (95.5-103 GPa) and for Mechanical Alloying elastic modulus was in the range of (66-82 GPa), which would be more suitable for biomedical applications. (From the SEM and EBSD analysis Mechanical alloying are more homogeneous mixing in comparison to Elemental Blend. Green density (just after compaction) for the elemental blend is more than mechanical alloying so that Sintered Density for Elemental Blend is more than Mechanical Alloying. Due to higher sintered density, porosity is more in case of the elemental blend. Also, due to higher porosity, bending strength is low in case of mechanical alloying with same sintering parameters as Elemental blend alloys. Micro-Hardness value is more in case of elemental blend in comparison to Mechanical Alloying. Elastic modulus is more in case of elemental blend in comparison to mechanical alloying; lower elastic modulus is more suitable for biomedical applications. Grains are more regular and smaller in case of Mechanical alloying which is due to a more homogeneous distribution of the elements in comparison to elemental blend. Powder processing technique is changed from Elemental Blend to Mechanical Alloying due to the improvement of homogeneity of green powders. Mechanical Alloying produced more homogeneous mixture due to high-speed milling with higher Ball to powder ratio (which generates higher energy within the jars and breaks the powders into smaller particles). Different combination of milling speed and milling time performed for our results and the effects of a combination of different parameters observed. / [ES] El titanio y sus aleaciones son los biomateriales principalmente usados debido a sus propiedades únicas como alta resistencia a la corrosión, bajo módulo de elasticidad, alta resistencia mecánica/densidad y buena biocompatibilidad. Las aleaciones Tiβ basadas en el sistema de aleación Ti-Mo muestran propiedades únicas para emplearse como biomateriales. Las aleaciones de Tiβ tienen un módulo de Young más bajo, menor apantallamiento de tensiones y menor reabsorción ósea. Esta investigación tiene como objetivo desarrollar un nuevo material biológico para un implante dental. Esta investigación evalúa la adición de Zr y una pequeña cantidad de Fe sobre la estabilidad de fase β y las propiedades mecánicas de la aleación de Ti-Mo que se utilizará para las aplicaciones médicas. Estas aleaciones se han producido utilizando dos técnicas de pulvimetalurgia (PM); La primera técnica es la combinación de polvos elementales (EB) que se ha seleccionado porque mejora el contacto superficial entre el elemento de aleación y el titanio (Ti) con una ruta rentable. El comportamiento de diferentes composiciones de aleaciones de Ti se evaluó utilizando esta técnica. Las muestras se prensaron uniaxialmente a 600 MPa y se sinterizaron a 1250ºC. La segunda técnica evaluada en este estudio fue la aleación mecánica (MA). Esta técnica tiene una mayor energía de mezcla que la mezcla elemental, lo que mejora el contacto mecánico entre las diferentes partículas y ayuda a la difusión durante el proceso de sinterización. Las muestras se prensaron, igualmente, a 600 MPa inicialmente, y después de evaluar las propiedades mecánicas, la presión de compactación se aumentó a 900 MPa para una mayor densidad en verde de los polvos. Se realizaron diferentes pruebas mecánicas y estudios microestructurales para las muestras de mezcla elemental (EB) y las muestras de aleación mecánica (MA) para garantizar las propiedades adecuadas para aplicaciones biomédicas. Las diferentes pruebas para MA han sido la fluidez, adecuada para conocer el flujo del polvo después del ciclo de molienda, y el análisis granulométrico, adecuado para el análisis de la distribución del tamaño de los polvos. Otras pruebas comunes como la determinación de la densidad por el método de Arquímedes, adecuada para calcular la porosidad de las muestras sinterizadas, el ensayo de flexión a tres puntos para conocer las propiedades mecánicas de las muestras sinterizadas y conocer la energía conservada por las muestras a rotura, y la dureza Vickers de las aleaciones. Mediante ultrasonidos se ha determinado el módulo elástico de las aleaciones. El análisis microestructural se ha realizado mediante microscopía electrónica de barrido y análisis por energías dispersivas de rayos X mediante los que se ha determinado la homogeneidad química de las aleaciones. La difracción de electrones retrodispersados (EBSD) ha permitido obtener la orientación cristalina de cada grano y su tamaño, pues resulta una excelente herramienta para el microanálisis del material. La densidad en verde para aleaciones de mezcla elemental está en el rango del 77.42- 78.11% y para las muestras de aleación mecánica se han obtenido densidades relativas del 74.94-78.58%. La densidad de los sinterizados, obtenida por el método de Arquímedes, está en el rango del 96.88-98.74%, para la mezcla elemental de polvos. La resistencia a la flexión obtenida a partir de la prueba de flexión a tres puntos está en un amplio rango de 666 a 2161 GPa, mientras que para los polvos de aleación mecánica se encuentra en el rango de los 371 a 1597 GPa. El módulo elástico determinado en las aleaciones obtenidas con polvos de mezcla elemental está en el rango de los 95.5 a los 103 GPa, mientras que, en las obtenidas con los polvos mezclados mecánicamente, su módulo elástico oscila entre los 66 y los 82 GPa, que sería más adecuado para un menor apantallamiento de tensiones. La microestructura de las muestras procesadas con polvos elementales con polvos mezclados mecánicamente, presentan diferencias sustanciales con un afinamiento del tamaño de grano con los polvos mezclados mecánicamente, aunque aparecen claramente diferenciadas dos fases distintas y una mayor proporción de fase . Debido a la menor densidad de las muestras procesadas con los polvos mezclados mecánicamente, estas presentan una menor resistencia mecánica y a su vez una menor plasticidad. Por ello se opta por utilizar técnicas de sinterización de alta densificación como el Spark Plasma Sinterirng (SPS) a pesar de lo cual no obtenemos mejora en el comportamiento mecánico de las mismas. Sin embargo, en los ensayos de corrosión y liberación de iones si se ha encontrado una sustancial mejor en las muestras obtenidas por SPS. / [CA] El titani i els seus aliatges són utilitzats, principalment, com a biomaterials per les seves propietats úniques com alta resistència a la corrosió, baix mòdul d'elasticitat, alta resistència mecànica específica i bona biocompatibilitat. Els aliatges β Ti basades en el sistema d'aliatge Ti-Mo mostren propietats úniques per a emprar-se com biomaterials. Els aliatges de β Ti tenen un mòdul de Young més baix, menor apantallament de tensions i menor reabsorció òssia. Aquesta investigació té com a objectiu desenvolupar un nou material biocompatible per a la seva aplicació com a implants dentals. Aquesta investigació avalua l'addició de Zr i petites quantitats de Fe sobre l'estabilitat de la fase β i les propietats mecàniques dels aliatges Ti-Mo que s'utilitzaran per a aplicacions biomèdiques. Aquests aliatges s'han produït utilitzant dues tècniques pulvimetalúrgiques (PM); La primera tècnica és la mescla elemental de pols (EB) que s'ha seleccionat perquè millora el contacte superficial entre l'element d'aliatge i el titani (Ti) amb una ruta rendible. El comportament de diferents composicions d'aliatges de Ti s'ha avaluat utilitzant aquesta tècnica. Les mostres es van premsar uniaxialment a 600 MPa i es sinteritzaren a 1250ºC. La segona tècnica avaluada en aquest estudi va ser l'aliatge mecànica (MA). Aquesta tècnica té una major energia de mescla que la mescla elemental, el que millora el contacte mecànic entre les diferents partícules i ajuda a la difusió durant el procés de sinterització. Les mostres es van premsar a 600 MPa inicialment, i després d'avaluar les propietats mecàniques, la pressió de compactació es va augmentar a 900 MPa per a una major densitat en verd de les pols. Es van realitzar diferents proves mecàniques i estudis microestructurals per a mostres de mescla elemental (EB) i per a mostres d'aliatge mecànica per garantir les propietats adequades per a aplicacions biomèdiques. Les diferents proves per MA són la prova de fluïdesa (adequada per conèixer el flux de la pols després del cicle d'aliatge mecànica) i l'anàlisi granulomètric (la prova és adequada per a l'anàlisi de distribució de la mida de les pols). S'han realitzat altres proves comunes com la prova d'Arquímedes, adequada per a calcular la porositat de les mostres sinteritzades. La prova de flexió de tres punts és adequada per conèixer la resistència a la flexió de les mostres sinteritzades i conèixer l'energia conservada per les mostres durant el seu trencament. Mitjançant ultrasons s'ha determinat el mòdul elàstic dels aliatges i la duresa s'ha realitzat per calcular la duresa Vickers de l'aliatge. S'ha realitzat l'anàlisi per SEM per conèixer la microestructura i l'anàlisi per EDX (mitjançant el qual es coneixeria la mescla adequada de l'element d'aliatge amb l'element central). EBSD (difracció d'electrons retro dispersats) també es realitza per a un més complet anàlisi sobre la microestructura, orientacions cristal·lines, mida de gra, mescla de diferents elements en els aliatges. EBSD és una excel·lent eina per al microanàlisi del material. De la secció de resultats es determinen la densitat en verd de l'aliatge, fluïdesa de la pols mòlta, granulometria de la pols, densitat de l'aliatge sinteritzada (prova d'Arquímedes), resistència a la flexió i mòdul a flexió de l'aliatge, mòdul elàstic per ultrasons, microestructura de l'aliatge (per SEM i EBSD). La densitat en verd per als aliatges de mescla elemental està en el rang dels 77.42-78.11%, mentre que per a les mostres d'aliatge mecànica van ser d'un 74.94-78.58%. La densitat dels sinteritzats, obtinguda pel mètode d'Arquímedes, està en el rang dels 96.88-98.74%, per la mescla elemental de pols. La resistència a la flexió obtinguda a partir de la prova de flexió de tres punts es troba en el rang dels 666-2161 MPa, mentre que per a les mostres de aliat mecànic el seu rang és molt ampli, des dels 371 als 1597 MPa. A partir de l'assaig d'ultrasons, el mòdul elàstic determinat per als aliatges de mescla elemental està en el rang de 95.5 a 103 GPa i per a les sinteritzades amb pols aliats mecànicament, es troba en el rang dels 66-82 GPa, que seria més adequat per a aplicacions biomèdiques. A partir de les anàlisis per SEM i EBSD, es confirma que l'aliatge mecànica és una mescla més homogènia en comparació amb la mescla elemental dels pols. La densitat en verd (just després de la compactació) per a la mescla elemental és més gran que en l'aliatge mecànica, de manera que la densitat sinteritzada per a la mescla elemental és major igualment que en l'aliatge mecànica. A causa d'una major densitat dels sinteritzats, la porositat és menor en el cas de la mescla elemental. A més, a causa d'una major porositat, la resistència a la flexió és baixa en cas d'aliatge mecànica amb els mateixos paràmetres de sinterització que els aliatges de mescla elemental. El valor de microduresa és major en el cas de la mescla elemental en comparació amb l'aliatge mecànica. El mòdul elàstic també resulta més gran en el cas d'una mescla elemental comparat amb l'aliatge mecànica, que en aquest cas resultaria més adequat per a aplicacions biomèdiques. Els grans són més regulars i més petits en el cas de l'aliatge mecànica, a causa d'una distribució més homogènia dels elements en comparació amb la mescla elemental i als efectes de recristal·lització durant la sinterització. L'aliatge mecànica va produir una mescla més homogènia dels elements d'aliatge, a causa de la mòlta a alta velocitat amb una relació boles/pols més alta que genera una major energia dins de les gerres i obté partícules de pols més petites. S'ha realitzat una combinació de diferents velocitats i temps de mòlta, optimitzant aquests paràmetres per a les nostres aliatges. / Mohan, P. (2020). Development of new high performance Titanium alloys with Fe-addition for dental implants [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147859 / TESIS
288

Grain-Boundary Parameters Controlled Allotriomorphic Phase Transformations in Beta-Processed Titanium Alloys

Dixit, Vikas 21 May 2013 (has links)
No description available.
289

Thermo-mechanical Characterization Of High-temperature Shape Memory Ni-ti-pd Wires

Fox, Matthew 01 January 2009 (has links)
Actuator applications of shape memory alloys have typically been limited by their phase transformation temperatures to around 100 degrees C. However, recently with a focus on aerospace and turbomachinery applications there have been successful efforts to increase the phase transformation temperatures. Several of these alloy development efforts have involved ternary and quaternary elemental additions (e.g., Pt, Pd, etc.) to binary NiTi alloys. Experimentally assessing the effects of varying composition and thermo-mechanical processing parameters can be cost intensive, especially when expensive, high-purity elemental additions are involved. Thus, in order to save on development costs there is value in establishing a methodology that facilitates the fabrication, processing and testing of smaller specimens, rather than larger specimens from commercial billets. With the objective of establishing such a methodology, this work compares thermo-mechanical test results from bulk dog-bone tensile Ni29.5Ti50.5Pd20 samples (7.62 mm diameter) with that of thin wires (100 μm-150 µm diameter) extracted from comparable, untested bulk samples by wire electrical-discharge machining (EDM). The wires were subsequently electropolished to different cross-sections, characterized with Scanning Electron Microscopy, Transmission Electron Microscopy and Energy Dispersive X-Ray Spectroscopy to verify the removal of the heat affected zone following EDM and subjected to Laser Scanning Confocal Microscopy to accurately determine their cross-sections before thermo-mechanical testing. Stress-strain and load-bias experiments were then performed on these wires using a dynamic mechanical analyzer and compared with results established in iv previous studies for comparable bulk tensile specimens. On comparing the results from a bulk tensile sample with that of the micron-scale wires, the overall thermomechanical trends were accurately captured by the micron-scale wires for both the constrained recovery and monotonic tensile tests. Specifically, there was good agreement between the stress-strain response in both the martensitic and austenitic phases, the transformation strains at lower stresses in constrained recovery, and the transformation temperatures at higher stresses in constrained recovery. This work thus validated that carefully prepared micron-diameter samples can be used to obtain representative bulk thermo-mechanical properties, and is useful for fabricating and optimizing composition and thermomechanical processing parameters in prototype button melts prior to commercial production. This work additionally assesses potential applications of high temperature shape memory alloy actuator seals in turbomachinery. A concept for a shape memory alloy turbine labyrinth seal is also presented. Funding support from NASA’s Fundamental Aeronautics Program, Supersonics Project (NNX08AB51A) and Siemens Energy is acknowledged.
290

Low Temperature And Reduced Length Scale Behavior Of Shape Memory And Superelastic Niti And Nitife Alloys

Manjeri, Radhakrishnan 01 January 2009 (has links)
Shape memory and superelastic applications of NiTi based alloys have typically been limited to near room temperature or to bulk length scales. The objective of this work is two-fold: first, to investigate shape memory behavior at low temperatures in the context of the R-phase transformation in NiTiFe alloys by recourse to arc-melting, differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and mechanical testing at low temperatures; and second, to investigate superelasticity and two-way shape memory behavior at reduced length scales in the context of NiTi by recourse to micro-compression, micro-indentation and TEM studies. Selected compositions of ternary NiTiFe shape memory alloys were arc-melted and thermomechanically processed to investigate the influence of composition and processing parameters on the formation of the R-phase. The methodology used for the processing and characterization of the alloys was established and included microprobe analysis, DSC, TEM and mechanical testing. No phase transformation was observed in alloys with Fe content in excess of 4 at.%. Thermomechanical treatments facilitated the formation of the R-phase in Ni-rich alloys. The range of the transformation between the R-phase and austenite, and the hysteresis associated with it were influenced by the distribution and size of metastable Ni4Ti3 precipitates. The investigation of the microstructural, thermal and mechanical properties of the R-phase transformation in NiTiFe alloys revealed a complex dependence of these properties on processing parameters. The present work also highlighted the hitherto unexplored competition between the two inelastic deformation modes operating in the R-phase (detwinning and stress-induced transformation) and established the preference of one mode over the other in stress-temperature space. iv The complete micromechanical response of superelastic NiTi was examined by performing careful micro-compression experiments on single crystal pillars of known orientations using a nanoindenter tip. Specifically, the orientation dependence of the elastic deformation of austenite, the onset of its transformation to martensite, the gradient and the hysteresis in the stress-strain response during transformation, the elastic modulus of the stress-induced martensite and the onset of plasticity of the stress-induced martensite were analyzed in separate experiments. A majority of the results were explained by recourse to a quantitative determination of strains associated with austenite grains transforming to martensite variants or twinning in martensite. Microstructural studies were also performed on a micro-indentation trained NiTi shape memory alloy specimen to understand the mechanisms governing the two-way shape memory effect. In situ TEM studies at temperature on specimens obtained at different depths below the indent showed the presence of retained martensite along with the R-phase. Previously, while such twoway shape memory behavior has typically been associated with large dislocation densities, this work provides evidence of the role of retained martensite and the R-phase in cases with reduced dislocation densities. Funding support for this work from NSF (CAREER DMR-0239512), NASA (NAG3-2751) and SRI is acknowledged.

Page generated in 0.0536 seconds