Spelling suggestions: "subject:"itanium matrix composites"" "subject:"atitanium matrix composites""
1 |
Interfacial and processing studies in Ti/SiC metal matrix compositesBaker, Adam M. January 1998 (has links)
No description available.
|
2 |
In-situ particulate-reinforcement of titanium matrix composites with boridesJimoh, Abdulfatai 04 April 2011 (has links)
Several research efforts have been directed towards in-situ fabrication of titanium
matrix composites (TMCs) from Ti and B4C powder mixtures as one of the ways to
improve the physical and mechanical properties of titanium and its alloys. In this
perspective, the present study reports the development of in-situ particulate
reinforced titanium matrix composites from TiH2-B4C and Ti-B6O powder mixtures
The relationship between densification and microstructure and mechanical properties
(hardness and fracture toughness) of pure Ti and in-situ reinforced titanium matrix
composites have been studied in detail using pressureless and hot-pressing
techniques. Titanium hydride powder was compacted into cylindrical pellets that
were used to produce pure Ti through dehydrogenation and pressureless sintering
technique. Various composition of TiH2-B4C powder mixtures were initially milled
using alumina balls in a planetary mill. The milling was to achieve homogeneous
mixing and distribution of the ceramic partially in the TiH2 powder, as well as
uniform distribution of reinforcing phases on the resulting Ti matrix.
Dehydrogenation and conversion of loose powder and compacts of TiH2 powder was
carried out in argon atmosphere and complete removal of hydrogen was achieved at
680 and 715oC for loose and compacted powder respectively. Pressureless sintering
of pure Ti from TiH2 was carried out between 750-1400oC, while pressureless
sintering and hot pressing of TiH2-B4C was carried out in the temperature
range1100-1400oC using 30MPa for hot pressed samples in argon atmosphere.
Different sintering times were considered. The microstructure and phase composition
of the sintered and hot-pressed materials were characterized using scanning electron
microscopy (SEM) and X-ray diffractometry (XRD). Densities of the sintered and hotpressed
materials were measured to determine the extent of densification, while
Vickers hardness and indentation fracture toughness were used to measure the
mechanical properties of the sintered and hot-pressed materials. Pure Ti from TiH2 showed higher densification of above 99% of theoretical density compared to literature where lower densification and swelling was observed. Its Vickers hardness is higher than that of commercial Ti sintered under the same conditions. Titanium matrix composites (TMCs) with different volume content of in-situ formed
reinforcements (TiB + TiC) were successfully produced. The amount of
reinforcements formed increases with increased amount of B4C used in the starting
powder mixtures, while the amount of needle-type TiB decrease and size and amount
of blocky-type TiB increase with increasing volume fraction of TiB. Dense materials
and improved Vickers hardness were achieved by the hot-pressed composites
especially at 1400oC compared to the pressureless sintered composites under the
same conditions and to the relevant literature. TMCs produced in this study show
higher Vickers hardness compared to available data in the literature. The hardness
was found to depend on the volume content of the reinforcing phases. However, the
fracture toughness obtained is low (5.3MPa.m1/2) in comparison to pure Ti but is
comparable with reported data in the literature.
The mechanisms leading to the achievement of improved densification and higher
hardness and the reasons for lower fracture toughness with different sintering
temperature and composition of reinforcements in the composites are critically
analysed. It has been shown that pure Ti can be pressureless sintered using TiH2 and
reinforced Ti matrix composites with improved densification and mechanical
properties can be produced from TiH2-B4C powder mixtures. Further work on the
comprehensive study of the mechanical properties of these composites would enhance
the industrial potential of using these materials and the processing route to produce
economically feasible titanium matrix composites
|
3 |
Composites à matrice titane et renforts TiB élaborés par métallurgie des poudres : cinétique de transformations des phases, formation des microstructures et propriétés mécaniques / Titanium matrix composites reinforced with TiB and produced by powder metallurgy : phase transformations kinetics, microstructure formation and mechanical propertiesRopars, Ludovic 05 December 2016 (has links)
Les travaux réalisés dans cette thèse visent d’une part, à comprendre les évolutions structurales et microstructurales d’un composite à matrice titane et à renforts TiB au cours des différentes étapes d’élaboration par métallurgie des poudres et des traitements thermiques associés, et d’autre part, à établir des relations entre microstructures et propriétés mécaniques pour ce matériau. Les cinétiques de transformations des phases de la matrice et du renfort ont été caractérisées par DRX haute énergie in situ, au cours des différents traitements du cycle de fabrication. Des analyses de la microstructure par MEB, MEB EBSD et MET (EDX et EELS) complètent l’analyse par DRX. Il a été montré que les cinétiques de transformation de la matrice des composites sont fortement affectées (décalage d’environ 300°C vers les hautes températures de la température de transus ß) par le procédé de fabrication. Ce décalage a été associé à un enrichissement en éléments interstitiels dû au broyage mécanique des poudres et aux interstitiels présents dans les renforts TiB2 introduits pour former le TiB. L’étude in situ a aussi précisé la séquence de transformation du diborure de titane en borure TiB–B27 via la formation de la phase métastable TiB-Bf. Les analyses par MEB et MET ont permis d’atteindre et de discuter des évolutions morphologiques et spatiales des phases (matrice et borures) au cours des différents traitements, et de caractériser la composition chimique des borures. Une séquence de transformation du renfort est proposée. Enfin, des matériaux composites ont été élaborés et soumis à divers traitements thermomécaniques. Le lien entre les propriétés mécaniques statiques et les évolutions morphologiques des borures et de la matrice, comme de la texture des phases, a été abordé. Des traitements ont été proposés pour atteindre des propriétés optimales / The work done in this PhD thesis aims at the understanding of, on the one hand, the structural and microstructural evolutions of a TiB reinforced titanium matrix composite during the various steps and treatments of the powder metallurgy route used to produce it, and, on the other hand, the link between the microstructures and the mechanical properties for this material. The phase transformation kinetics, in the matrix and in the reinforcement, were characterised using in situ high energy XRD, during these treatments. Microstructural analysis, using SEM, SEM-EBSD and TEM (EDX and EELS) complete the XRD analysis. The matrix phase transformation kinetics were shown to be highly impacted by the processing route (a 300°C shift toward the high temperatures is found for the ß transus temperature). This shift has been linked with an increase in interstitial elements, coming from the powder mechanical alloying and from the interstitials in the TiB2 powder used to produce the TiB. The in situ study also helped in clarifying the transformation sequence of the TiB2 into TiB-27, via the formation of the metastable phase TiB-Bf. SEM and TEM analysis allowed to get access to and discuss the morphological and spatial evolutions of the phases (matrix and borides) during the various treatments and to characterise the chemical composition of the borides. A transformation sequence has been proposed. Finally, in a last part, composite materials were elaborated and submitted to defined heat treatments. The link between the static mechanical properties and the morphological and texture evolutions in the matrix and in the borides, was discussed. Some treatments were proposed to reach optimum mechanical properties
|
Page generated in 0.091 seconds