Spelling suggestions: "subject:"aluminumvanadium alloys"" "subject:"titaniumaluminum alloys""
11 |
Role of synergy between wear and corrosion in degradation of materialsAzzi, Marwan. January 2008 (has links)
No description available.
|
12 |
A continuum surface layer effect in polycrystalline aggregatesLaurent, Michel P. 08 June 2009 (has links)
Uniaxial tension tests on uniform cross section specimens of Ti-6Al-4V and aluminum 7475-T651 show that the stress in the direction of load application determined by x-ray diffraction and the nominal applied stress display the expected linear correspondence up to a maximum stress somewhat below the bulk yield paint. Above this stress, the xray stress is noticeably less than expected. Upon unloading, there is a substantial acquired compressive residual stress. Because the x-ray diffraction measurements provided average stress values in a surface layer of only a few grain diameters, these results suggest that the surface layer of the metal is yielding at a lower stress than the bulk. This anomalous behavior is duplicated qualitatively with a continuum model of an aggregate of soft and hard square grains obeying the Von Mises yield criterion. The effect is purely mechanical. No material effects, such as lower yield point or dislocation density for the surface grains, are invoked. The continuum effect decreases rapidly with depth, becoming negligible for depths exceeding 2-3 grain or domain diameters. Further work is required to refine the model for real systems and to assess the importance of material effects acting in conjunction with the continuum effect. / Master of Science
|
13 |
Crystal plasticity modeling of Ti-6Al-4V and its application in cyclic and fretting fatigue analysisZhang, Ming 10 March 2008 (has links)
Ti-6Al-4V, known for high strength-to-weight ratio and good resistance to corrosion, has been widely used in aerospace, biomedical, and high-performance sports applications. A wide range of physical and mechanical properties of Ti-6Al-4V can be achieved by varying the microstructures via deformation and recrystallization processes. The aim of this thesis is to establish a microstructure-sensitive fatigue analysis approach that can be applied in engineering applications such as fretting fatigue to permit explicit assessment of the influence of microstructure. In this thesis, crystal plasticity constitutive relations are developed to model the cyclic deformation -TiAl has beenabehavior of Ti-6Al-4V. The development of the slip bands within widely reported and has been found to play an important role in deformation and fatigue behaviors of Ti-6Al-4V. The shear enhanced model is used to simulate the formation and evolution of slip bands triggered by planar slip under static or quasi-static loading at room temperature. Fatigue Indicator Parameters (FIPs) are introduced to reflect driving force for the different crack formation mechanisms in Ti-6Al-4V. The cyclic stress-strain behavior and fretting fatigue sensitivity to microstructure and loading parameters in dual phase Ti-6Al-4V are investigated.
|
14 |
Mesenchymal stem cell interaction with nanonstructured biomaterials for orthopaedic applicationsClem, William Charles. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Additional advisors: Yogesh K. Vohra, Xu Feng, Jack E. Lemons, Timothy M. Wick. Description based on contents viewed July 8, 2009; title from PDF t.p. Includes bibliographical references.
|
Page generated in 0.0559 seconds