• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Disc electrophoresis studies of healthy and tobacco mosaic virus infected Nicotiana tabacum L. plants

Mitchell, Dawn Masunaga, 1942- January 1967 (has links)
No description available.
2

Influence of nitrogen rate, harvest frequency, lower leaf management, and chemical topping on mammoth cultivars of flue-cured tobacco

Long, Robert Sherman 10 June 2012 (has links)
Mammoth cultivars of tobacco do not flower under normal production conditions. A field management system must be devised for these cultivars to optimize agronomic traits and chemical constituents of the cured leaf. Field experiments were conducted at the Southern Piedmont Agricultural Experiment Station near Blackstone, Virginia in 1987 and 1988 to determine the influence of nitrogen rate, harvest frequency, and time and number of basal leaf removal on several agronomic and chemical properties of a mammoth cultivar of flue-cured tobacco. The feasibility of chemically topping two mammoth cultivars was also investigated. Increasing nitrogen rates increased values per hectere by $176 and total alkaloids by 0.5% in 1987. Increasing the number of harvest increased percentage lugs (X) and reducing sugars for stalk position B in 1988 but decreased reducing sugars for stalk positions A and C in 1988. Delaying leaf removal increased yield and values per hectare by 141 kg ha⁻¹ and $84, respectively, and decreased lug production in 1987 and 1988. Total alkaloids decreased by 0.7% with delayed leaf removal in 1987. Delayed leaf removal increased reducing sugars at stalk position A by 2% in 1988. Removing fewer basal leaves increased yields by 115 kg ha⁻¹, values per hectare, and percentage smoking leaf (H) for both years. Alkaloids for stalk position B increased with fewer basal leaves removed in 1988. Decreased basal leaf removal decreased plant height by 9 cm, percentage leaf (B), and reducing sugars in stalk positions A, B, and D in 1988. Delaying basal leaf removal and decreasing harvest frequency increased the percentage of cutters (C). Percentage smoking leaf increased with nitrogen rate and removal of fewer basal leaves. Chemical topping created taller plants with more leaves, narrower tip leaves, lower total alkaloids, and equal or higher reducing sugars relative to hand topping. Tip leaves from chemically topped plants were 6 to 8 cm shorter than hand-topped plants in 1987. Maleic hydrazide treatments resulted in 429 to 700 kg ha⁻¹ lower yields and lower values than hand topping and 6 more suckers than all other treatments. The fatty alcohol / maleic hydrazide treatment produced 380 kg ha⁻¹ higher yields and grade indices lower than the hand-topped control in 1987. Above normal nitrogen rate, 3 or 5 time harvest, removal of 4 to 6 leaves at topping or via senescence, and chemical topping with Prime+ or fatty alcohol / maleic hydrazide tank mix provided the best field management system for mammoth cultivars under the conditions of this study. / Master of Science
3

Promoter analysis and expression of the tomato purple acid phosphatase (TPAP1) in tobacco.

January 2004 (has links)
Suen Pui Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 154-168). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / List of Figures --- p.vii / List of Tables --- p.ix / List of Abbreviations --- p.x / Chapter Chapter 1: --- Introduction --- p.1 / Chapter Chapter 2: --- Literature Review --- p.3 / Chapter 2.1 --- Phosphorus and Plants --- p.3 / Chapter 2.1.1 --- Importance of phosphorus --- p.3 / Chapter 2.1.2 --- Phosphorus is a limiting nutrient --- p.3 / Chapter 2.2 --- Responses of Plants to Phosphate Deficiency --- p.4 / Chapter 2.2.1 --- Morphological changes of plants during phosphate deficiency --- p.5 / Chapter 2.2.1.1 --- Modification of the root system --- p.5 / Chapter 2.2.1.2 --- Symbiotic association of roots with mycorrhiza --- p.6 / Chapter 2.2.2 --- Maintenance of phosphate levels in plants during phosphate deficiency --- p.7 / Chapter 2.2.2.1 --- Phosphate homeostasis in plants --- p.7 / Chapter 2.2.2.2 --- "Enhancement of Pi scavenging, recycling and uptake" --- p.9 / Chapter 2.2.2.3 --- Pi-limited metabolism --- p.11 / Chapter 2.2.3 --- Hormones and phosphate starvation responses --- p.12 / Chapter 2.2.4 --- Regulation of gene expression during phosphate starvation --- p.14 / Chapter 2.2.4.1 --- The pho regulon in bacteria and yeast --- p.14 / Chapter 2.2.4.2 --- The coordination of phosphate starvation induced genes in plants --- p.19 / Chapter 2.2.4.3 --- Signaling phosphate starvation --- p.19 / Chapter 2.2.4.4 --- Phosphite and phosphate starvation --- p.21 / Chapter 2.2.4.5 --- Transcriptional regulation during phosphate starvation --- p.22 / Chapter 2.3 --- Acid Phosphatases in Higher Plants --- p.26 / Chapter 2.3.1 --- Enzymatic properties of acid phosphatases --- p.26 / Chapter 2.3.2 --- Localization and function of acid phosphatases --- p.27 / Chapter 2.3.3 --- Expression of acid phosphatases --- p.28 / Chapter 2.4 --- Purple Acid Phosphatases --- p.29 / Chapter 2.4.1 --- Properties of purple acid phosphatases --- p.29 / Chapter 2.4.2 --- Regulation and expression of plant purple acid phosphatase --- p.32 / Chapter 2.5 --- Tomato Purple Acid Phosphatases --- p.33 / Chapter 2.6 --- Promoter Analysis --- p.35 / Chapter 2.6.1 --- Structure of an eukaryotic promoter --- p.35 / Chapter 2.6.2 --- Promoter analysis by deletion mapping --- p.37 / Chapter 2.6.3 --- The computational approaches in promoter analysis --- p.38 / Chapter 2.6.4 --- Transient expression assay and transgenic expression assay --- p.39 / Chapter 2.7 --- Transcriptional Regulation of Tomato Purple Acid Phosphatase Expression --- p.40 / Chapter 2.8 --- Hypothesis --- p.41 / Chapter Chapter 3: --- Materials and Methods --- p.43 / Chapter 3.1 --- Introduction --- p.43 / Chapter 3.2 --- Materials --- p.44 / Chapter 3.2.1 --- Chemicals --- p.44 / Chapter 3.2.2 --- Plant materials --- p.44 / Chapter 3.2.3 --- Plasmid vectors and bacterial strains --- p.44 / Chapter 3.2.4 --- Primers design --- p.45 / Chapter 3.2.5 --- Confirmation of sequence fidelity --- p.46 / Chapter 3.3 --- Cloning of the TPAP1 Promoter Fragments --- p.46 / Chapter 3.3.1 --- Genomic DNA extraction --- p.46 / Chapter 3.3.1.1 --- Materials --- p.46 / Chapter 3.3.1.2 --- Procedures --- p.47 / Chapter 3.3.2 --- Cloning strategy of TPAP1 promoter --- p.47 / Chapter 3.3.3 --- TPAP1 promoter cloning --- p.48 / Chapter 3.3.3.1 --- Long-distance PCR --- p.48 / Chapter 3.3.4 --- Chimeric gene constructs --- p.48 / Chapter 3.3.4.1 --- Chimeric gene construction for particle bombardment --- p.51 / Chapter 3.3.4.2 --- Chimeric gene construction for tobacco transformation --- p.51 / Chapter 3.4 --- Transient Expression Assay of the TPAP1 Promoter Fragments --- p.54 / Chapter 3.4.1 --- TPAP1 promoter activity assay --- p.54 / Chapter 3.4.2 --- Preparation of MS culture medium --- p.54 / Chapter 3.4.3 --- Growing tomato seedlings in MS liquid medium --- p.56 / Chapter 3.4.4 --- Biolistic bombardment --- p.56 / Chapter 3.4.5 --- GUS histochemcial staining --- p.57 / Chapter 3.4.5.1 --- Materials --- p.57 / Chapter 3.4.5.2 --- Procedures --- p.57 / Chapter 3.5 --- Transgenic Assay of the TPAP1 Promoter Fragments --- p.58 / Chapter 3.5.1 --- Materials for tobacco transformation --- p.58 / Chapter 3.5.2 --- Agrobacterium tumefaciens preparation --- p.58 / Chapter 3.5.3 --- Tobacco transformation and regeneration --- p.59 / Chapter 3.5.4 --- Promoter activity analysis --- p.60 / Chapter 3.5.4.1 --- Materials --- p.60 / Chapter 3.5.4.2 --- Procedures --- p.60 / Chapter 3.5.5 --- Southern blot analysis --- p.61 / Chapter 3.5.6 --- RNA isolation --- p.61 / Chapter 3.5.6.1 --- Materials --- p.61 / Chapter 3.5.6.2 --- Procedures --- p.61 / Chapter 3.5.7 --- Northern blot analysis --- p.62 / Chapter 3.6 --- Biochemical Analysis of Acid Phosphatase Activities --- p.63 / Chapter 3.6.1 --- Excretion of acid phosphatase into the environment --- p.63 / Chapter 3.6.2 --- Growing tomato seedlings in MS medium --- p.63 / Chapter 3.6.3 --- Acid phosphatase activity assay by p-nitrophenyl phosphate --- p.64 / Chapter 3.6.4 --- Activity-gel detection --- p.65 / Chapter 3.6.4.1 --- Materials --- p.65 / Chapter 3.6.4.2 --- Procedures --- p.65 / Chapter 3.7 --- "Sequence Analysis of the TPAP1 gene, cDNA and promoter" --- p.66 / Chapter 3.7.1 --- Isolation of TPAPl cDNA --- p.66 / Chapter 3.7.1.1 --- Rapid amplification of cDNA ends (RACE) --- p.66 / Chapter 3.7.1.2 --- RT-PCR --- p.67 / Chapter 3.7.2 --- Isolation of TPAP1 gene --- p.67 / Chapter 3.7.2.1 --- PCR amplification of the TPAP1 gene --- p.67 / Chapter 3.7.2.2 --- TPAP1 gene sequence determination --- p.68 / Chapter 3.7.3 --- Sequence analysis --- p.69 / Chapter 3.8 --- Statistical analysis --- p.70 / Chapter Chapter 4: --- Results --- p.72 / Chapter 4.1 --- "Cloning of the TPAP1 Promoter Fragments, Gene and cDNA" --- p.72 / Chapter 4.1.1 --- TPAP1 promoter fragment constructs --- p.72 / Chapter 4.1.2 --- TPAP1 cDNA cloning --- p.72 / Chapter 4.1.3 --- TPAP1 gene cloning --- p.72 / Chapter 4.2 --- "Sequence analysis of the TPAP1 promoter, gene, cDNA and predicted amino acid sequence" --- p.76 / Chapter 4.2.1 --- "The DNA sequence of the TPAP1 promoter, gene and cDNA" --- p.76 / Chapter 4.2.2 --- Properties of TPAP1 cDNA and protein --- p.83 / Chapter 4.2.3 --- Identification of potential metal ligating residues on TPAP1 --- p.85 / Chapter 4.2.4 --- Phylogenetic relationship of TPAPl to other plant PAPs --- p.86 / Chapter 4.2.5 --- Sequence comparison of 5'UTR ofTPAPl and NtPAP12 --- p.89 / Chapter 4.3 --- APase Activity Assay --- p.90 / Chapter 4.3.1 --- p-NPP APase activity assay --- p.90 / Chapter 4.3.2 --- Activity-gel detection --- p.90 / Chapter 4.4 --- "Comparison of TPAP 1, IAP,SAP 1 and SAP2" --- p.96 / Chapter 4.5 --- Potential Cis-acting Regulatory Elements (CAREs) on the TPAP1 Promoter --- p.100 / Chapter 4.5.1 --- Search for potential CAREs --- p.100 / Chapter 4.5.2 --- Functions of CAREs --- p.100 / Chapter 4.6 --- Transient Expression Analysis --- p.102 / Chapter 4.6.1 --- Biolistic bombardment of TPAP1 promoter fragments into tomato roots --- p.102 / Chapter 4.7 --- Transgenic Expression Analysis --- p.104 / Chapter 4.7.1 --- Transformation of tobacco --- p.104 / Chapter 4.7.2 --- Northern and RT-PCR analysis of GUS expression --- p.110 / Chapter 4.7.3 --- GUS activity analysis --- p.114 / Chapter 4.7.4 --- Histochemical staining of GUS --- p.123 / Chapter Chapter 5: --- Discussions --- p.135 / Chapter 5.1 --- Properties ofTPAPl --- p.135 / Chapter 5.1.1 --- "Structure of the TPAP1 promoter, gene and cDNA" --- p.135 / Chapter 5.1.2 --- Potential flmction(s) ofTPAPl --- p.135 / Chapter 5.1.3 --- The potential relationship between TPAP1 and NtPAP12 --- p.137 / Chapter 5.2 --- Induction of Secretory APases during Pi Starvation --- p.137 / Chapter 5.3 --- Putative Protein Encode by theTPAP 1 cDNA --- p.138 / Chapter 5.4 --- Promoter Analysis of TPAP1 --- p.140 / Chapter 5.4.1 --- Construct preparation --- p.140 / Chapter 5.4.2 --- Potential CAREs located on the TPAP1 promoter --- p.141 / Chapter 5.4.3 --- Transient expression analysis --- p.142 / Chapter 5.4.4 --- Transgenic expression analysis --- p.143 / Chapter 5.4.4.1 --- Northern analysis and RT-PCR analysis of GUS expression --- p.143 / Chapter 5.4.4.2 --- GUS activity analysis --- p.143 / Chapter 5.4.4.3 --- Histochemical staining of GUS --- p.145 / Chapter 5.5 --- Hypothetical Model for TPAP1 Promoter Activities --- p.146 / Chapter 5.5.1 --- Model for expression level --- p.146 / Chapter 5.5.2 --- Models for spatial expressions --- p.148 / Chapter 5.6 --- Future Perspectives --- p.150 / Chapter Chapter 6: --- Conclusions --- p.152 / References --- p.154
4

Speciation of metals and metalloids in tobacco and tobacco smoke : implications for health and regulation

Campbell, Robert Charles James January 2014 (has links)
Some metals and metalloids make significant contributions to the harmful effects of tobacco consumption although understanding the mechanisms involved in toxicity is hampered by the lack of information on their chemical and valence species, both in tobacco and in smoke. This research addresses the speciation of the metals and metalloids most frequently implicated, particularly those elements that exist in nature in multiple valence states, namely arsenic (As) and chromium (Cr), there being considerable differences in toxicity with oxidation state. A strategy was devised to overcome some of the problems that have thwarted earlier attempts at speciation. Firstly tobacco plants were cultivated under controlled conditions in compost burdened with high levels of metals and metalloids resulting in leaf with up to 250 µg g⁻¹ As, although Cr uptake was less successful. Secondly valence speciation even at the exceptionally low concentrations of As and Cr in smoke from unburdened tobacco was achieved with XANES analysis using the exceptionally bright Diamond synchrotron source. This revealed that combustion of tobacco has a marked effect on valence speciation with As(III), the reduced form of As, dominating (and persisting) in condensate of tobacco smoke while ash is dominated by the oxidised form, As(V). Chromium also appears to be present in smoke mainly as reduced Cr(III) species. HPLC-ICPMS analysis of arsenic indicates the dominance of inorganic over organic species (~4:1). Other metals were investigated in less detail. These findings establish that arsenic is present in smoke in its most toxic form and represents a significant risk to health. Conversely smokers appear to be exposed to the less harmful species of chromium. These results support a recent WHO report that includes As but not Cr in a list of four metals and metalloids recommended for regulation in crops and commercial products in the interests of public health.

Page generated in 0.2136 seconds