• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Piezoresistive Nano-Composites: Characterization and Applications

Hyatt, Thomas B. 25 June 2010 (has links) (PDF)
Innovative multifunctional materials are essential to many new sensor applications. Piezoresistive nano-composites make up a promising class of such materials that have the potential to provide a measurable response to strain over a much wider range than typical strain gages. Commercial strain gages are currently dominated by metallic sensors with a useable range of a few percent strain at most. There are, however, many applications that would benefit from a reliable wide-range sensor. These might include the study of explosive behavior, instrumentation of flexible components, motion detection for compliant mechanisms and hinges, human-technology interfaces, and a wide variety of bio-mechanical applications where structural materials may often be approximated as elastomeric. In order to quantify large strains, researchers often use optical methods which are tedious and difficult. This thesis proposes a new material and technique for quantifying large strain (up to 40%) by use of piezoresistive nano-composite strain gages. The nano-composite strain gage material is manufactured by suspending nickel nano-strands within a biocompatible silicone matrix. Study and design iteration on the strain gage material requires an improved understanding of the electrical behavior and conduction path within the material when strained. A percolation model has been suggested for numerical approximations, but has only provided marginal results for lack of data. Critical missing information in the percolation model is the nano-strand cluster size, and how that size changes in response to strain. These data are gathered using a dynamic technique in the scanning electron microscope called voltage contrast. Cluster sizes were found to vary in size by approximately 6% upon being strained to 10%. A feasibility study is also conducted on the nano-composite to show its usability as a strain gage. High Displacement Strain Gages (HDSGs) were manufactured from the nano-composite. HDSGs measured the strain of bovine ligament under prescribed loading conditions. Results demonstrate that HDSGs are an accurate means for measuring ligament strains across a broad spectrum of applied deformations.

Page generated in 0.0291 seconds