• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 1
  • Tagged with
  • 17
  • 17
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instrumentation of particle conveying using electrical charge tomography

Rahmat, Mohd Fua'ad January 1996 (has links)
This thesis presents an investigation into the application of electrodynamic sensors to a tornographic imaging system. Several sensing mechanisms for measurement using non-intrusive techniques are discussed and their relevance to pneumatic conveying considered. Electrical charge tomography systems are shown to be worthy of investigation. Electrodynamic sensors are inherently low cost and simple in concept. This sensor is used to detect the inherent charge on dry, moving solids. Models are developed to predict the sensitivity of circular and rectangular electrodes. The spatial filtering effect of these sensors is investigated. Cross correlation is briefly reviewed and a software program is presented and tested. For tomographic imaging the forward problem for the individual sensors is modelled, used to solve the inverse problem and derive the linear back projection and filtered back projection algorithms. The design of the electronic circuitry which forms the transducer is presented. The gravity drop flow rig is described and the relationship between sand flow and plastic bead flow relative to the flow indicator setting determined. The dual 16-channel sensor array measurement section is described. Flow models are developed and used to predict the relative output voltage profiles expected from the sensor arrays. The linearity and frequency bandwidth of the sensor electronics is measured. The effect of sensor size on sensitivity and spatial filtering are investigated for circular and rectangular electrodes. Estimates of the solid concentration of flowing particles are made using individual sensors. Concentration profiles are generated and compared with predicted values. Peripheral velocities of the flowing material are determined from transit times calculated by cross correlation of upstream and downstream sensor signals. Concentration profiles are calculated using linear back projection and filtered back projection algorithms from data measured by the sensor arrays. Velocity profiles are obtained by cross correlation of upstream and downstream pixel concentration values. Estimates of the mass flow rate are obtained by combining concentration and velocity profiles. Suggestions for further work on electrodynamic sensors and tomographic measurements are made.
2

DUAL BAND HYPERSPECTRAL IMAGING SPECTROMETER

Hartke, John January 2005 (has links)
A temporally and spatially non-scanning imaging spectrometer covering two separate spectral bands in the visible region using computed tomographic imaging techniques is described. The computed tomographic techniques allow for the construction of a three-dimensional hyperspectral data cube (x, y, λ) from the two-dimensional input in a single frame time. A computer generated holographic dispersive grating is used to disperse the incoming light into several diffraction orders on a focal plane composed of interwoven pixels independently sensitive to the two bands of interest. Separating the input of the two spectral pixel types gives co-registered output between the two bands and overcomes the limitation of overlapping orders. The proof of concept in the visible is presented using a commercially available camera.The lessons learned from the visible system are applied to a dual infrared band imaging spectrometer. Utilizing recent developments in dual band infrared focal planes a dual band imaging spectrometer is designed covering portions of the MWIR and LWIR atmospheric transmission windows. The system design includes the evaluation of recent developments in dual band infrared focal planes, the design and evaluation of the computer generated holographic disperser, and the optical elements in the system.
3

Temporal Coding of Volumetric Imagery

Llull, Patrick Ryan January 2016 (has links)
<p>'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. </p><p>This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. </p><p>Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level.</p><p>Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,\lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions.</p><p>Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke.</p><p>Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.</p> / Dissertation
4

SYNTHETIC APERTURE GROUND PENETRATING RADAR IMAGING FOR NONDESTRUCTIVE EVALUATION OF CIVIL AND GEOPHYSICAL STRUCTURES

Brown, Andrew, Lee, Hua 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Synthetic-aperture microwave imaging with ground penetrating radar systems has become a research topic of great importance for the potential applications in sensing and profiling of civil and geophysical structures. It allows us to visualize subsurface structures for nondestructive evaluation with microwave tomographic images. This paper provides an overview of the research program, ranging from the formation of the concepts, physical and mathematical modeling, formulation and development of the image reconstruction algorithms, laboratory experiments, and full-scale field tests.
5

CHARACTERISTICS AND APPLICATIONS OF A SCANNING NANO-SLIT OPTICAL SENSOR

George, Anoop January 2011 (has links)
In this dissertation, imaging characteristics of a nano-slit are investigated. Applications of a scanning and rotating nano-slit in measuring sub-micron aerial features are demonstrated. Coherent sub-micron spot distributions are reconstructed with a very high contrast. Finally, high NA partially coherent images with features as small as 210 nm half-pitch are reconstructed and the ultimate resolution of the system is determined.A nano-slit is characterized as a sensor for coherent line-and-space features. Experiments and simulation verify image detection with contrasts greater than 0.9. Effects of polarization on imaging performance are reported. A scanning and rotating nano-slit in conjunction with a filtered back-projection technique is used to reconstruct sub-micron coherent spot distributions. Simulation results show very good agreement with the experiment. Further, it is shown that the reconstruction is very resilient to some common random experimental errors.Imaging characteristics of a scanning nano-slit sensor are determined for high NA partially coherent images. Good imaging performance (contrast > 0.8) is demonstrated with line-and-space images up to a spatial frequency of 2.38 lp / micron. Sub-micron features in a high NA partially coherent image are measured with a scanning and rotating nano-slit. A modified microscope is used to create the measured features, including 210 nm half-pitch features that cannot be imaged using the microscope in a conventional imaging mode. Using the filtered back projection technique, two-dimensional sub-micron features are reconstructed by the nano-slit sensor. It is determined that the resolution limit of ~ 200 nm is determined by the reconstruction technique and not by the width of the nano-slit.
6

3D Image Reconstruction Using Optical Phase Retrieval And Cone-Beam Tomography

Hemanth, T 02 1900 (has links) (PDF)
No description available.
7

A Tunable Snapshot Imaging Spectrometer

Tebow, Christopher January 2005 (has links)
A tunable snapshot imaging spectrometer has been demonstrated. A liquid crystal spatial light modulator (LC SLM) has been integrated into a computed tomographic imaging spectrometer (CTIS) to achieve tunability. The LC SLM allows for rapid, programmable, and non-mechanical alteration of its phase profile by the application of appropriate voltages to its transparent electrodes.The goal of this dissertation is twofold: (1) to integrate a liquid crystal spatial light modulator into a CTIS instrument and characterize its performance as a tunable CTIS disperser, and (2) to implement tunability by analyzing different CTIS configurations.The theoretical model of CTIS operation, calibration, reconstruction, and disperser design are covered in detail. The cross talk of the LC SLM forces the use of a feedback design algorithm rather than designing the desired phase profile a priori in the computer. The modifications to the current polychromatic linear inversion technique for use with the LC SLM in feedback are presented. The result of the modifications is the successful integration of a reprogrammable (i.e. tunable) disperser for the CTIS instrument.The implementation of tunability is explored by analyzing the spectral resolution of a reconstructed point source for different disperser configurations. A method for experimentally determining the CTIS spectral resolution is presented.
8

Microscopie tomographique diffractive et profilométrie multivue à haute résolution / Tomographic diffractive microscopy and multiview profilometry with high resolution

Liu, Hui 27 June 2014 (has links)
Nous avons développé un microscope tomographique diffractif en réflexion, qui permet d’observer la surface d’un échantillon avec une résolution latérale améliorée comparée à un microscope holographique conventionnel. À partir des même données expérimentales (les hologrammes acquis sous différents angles d’illumination), des mesures à haute précision longitudinale peuvent être réalisées sur la surface d’un échantillon purement réfléchissant, par reconstruction du profil de hauteur à partir de la phase. Cette méthode d’imagerie multimodale présente plusieurs avantages comparée aux mesures en holographie interférométrique classique : amélioration de la résolution latérale sur la partie diffractive, déroulement de phase facilité, réduction du bruit cohérent, l’ensemble étant associé à la grande précision longitudinale fournie par les mesures de phase. Nous montrons ces possibilités en imageant divers échantillons minces. / We have developed a tomographic diffractive microscope in reflection, which permits observation of sample surfaces with an improved lateral resolution, compared to a conventional holographic microscope. From the same set of data, high-precision measurements can be performed on the shape of the reflective surface by reconstructing the phase of the diffracted field. doing so allows for several advantages compared to classical holographic interferometric measurements: improvement in lateral resolution, easier phase unwrapping, reduction of the coherent noise, combined with the high-longitudinal precision provided by interferometric phase measurements. We demonstrate these capabilities by imaging various test samples.
9

X-ray Physics And Computerized Tomography Simulation Using Java And Flash

Sik, Ayhan Serkan 01 December 2003 (has links) (PDF)
For the education of X-ray imaging, having a detailed knowledge on the interaction of radiation with matter is very important. Also the generation and detection concepts of the X-ray have to be grasped well. Sometimes it is not easy to visualize the interactions and assess the scheme in quantum physics level for the medical doctors and the engineers who have not studied on the modern physics in an appropriate level. This thesis aims to visualize these interactions, X-ray generation and detection, and computerized tomographic imaging. With these simulations, the user can 1) observe and analyze which type of interaction occurs under which condition, 2) understand the interaction cross sections and interaction results, 3) visualise X-ray generation and detection features, 4) clarify the method of image reconstruction, and the features affecting the image quality in computerized tomography system. This is accomplished by changing the controllable variables of the radiation and the systems with the provided interfaces. In this thesis, JAVA/FLASH based simulation interfaces are designed to easily assess the subject. The benefits of these software are their ability to execute the programs prepared on the World Wide Web media. The interfaces are accessible from anywhere, at any time.
10

Toward Computationally Efficient Models for Near-infrared and Photoacoustic Tomographic Imaging

Bhatt, Manish January 2016 (has links) (PDF)
Near Infrared (NIR) and Photoacoustic (PA) Imaging are promising imaging modalities that provides functional information of the soft biological tissues in-vivo, with applica-tions in breast and brain tissue imaging. These techniques use near infrared light in the wavelength range of (600 nm - 900 nm), giving an advantage of being non-ionizing imaging modality. This makes the prolong bed-side monitoring of tissue feasible, making them highly desirable medical imaging modalities in the clinic. The computation models that are deployed in these imaging scenarios are computationally demanding and often require a high performance computing systems to deploy them in real-time. This the-sis presents three computationally e cient models for near-infrared and photoacoustic imaging, without compromising the quality of measured functional properties, to make them more appealing in clinical scenarios. The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modi ed the BeerLambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concen-trations for NIR spectroscopic data analysis. Even though MBLL is e ective in terms of providing qualitative comparison, it su ers from its applicability across tissue types and tissue dimensions. A Lambert-W function-based modeling for light propagation in biological tissues is proposed and introduced, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coe cients o and . The model is validated against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. Numerous human and animal tissues are included to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is rst of its kind in providing accurate modeling of NIR light propagation in biological tissues. Model based image reconstruction techniques yield better quantitative accuracy in photoacoustic (PA) image reconstruction, especially in limited data cases. An exponen-tial ltering of singular values is proposed for carrying out the image reconstruction in photoacoustic tomography. The results were compared with widely popular Tikhonov regularization, time reversal, and the state of the art least-squares QR based reconstruc-tion algorithms for three digital phantom cases with varying signal-to-noise ratios of data. The exponential ltering provided superior photoacoustic images of better quanti-tative accuracy. Moreover, the proposed ltering approach was observed to be less biased towards regularization parameter and did not come with any additional computational burden as it was implemented within the Tikhonov ltering framework. It was also shown that the standard Tikhonov ltering becomes an approximation to the proposed exponential ltering. The model based image reconstruction techniques for photoacoustic tomography re-quire an explicit regularization. An error estimate minimization based approach was proposed and developed for the determination of regularization parameter for PA imag-ing. The regularization was used within Lanczos bidiagonalization framework, which provides the advantage of dimensionality reduction for a large system of equations. The proposed method was computationally faster than the state of the art techniques and provided similar performance in terms of quantitative accuracy in reconstructed im-ages.The estimate can also be utilized in determining suitable regularization parameter for other popular techniques such as Tikhonov,exponential ltering and `1 norm based regularization methods.

Page generated in 0.0754 seconds