• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1720
  • 1354
  • 299
  • 188
  • 90
  • 75
  • 52
  • 44
  • 29
  • 27
  • 18
  • 15
  • 15
  • 15
  • 15
  • Tagged with
  • 4620
  • 1764
  • 1295
  • 895
  • 774
  • 637
  • 627
  • 572
  • 552
  • 468
  • 467
  • 447
  • 435
  • 415
  • 414
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Design and Testing of a Laboratory Ultrasonic Data Acquisition System for Tomography

Johnson, Wesley Byron 03 February 2005 (has links)
Geophysical tomography allows for the measurement of stress-induced density changes inside of a rock mass or sample by non-invasive means. Tomography is a non-destructive testing method by which sensors are placed around a sample and energy is introduced into the sample at one sensor while the other sensors receive the energy. This process is repeated around the sample to obtain the desired resolution. The received information is converted by a mathematical transform to obtain a tomogram. This tomogram shows a pixelated distribution of the density within the sample. Each pixel represents an average value at that point. The project discussed in this paper takes the principle of ultrasonic tomography and applies it to geomechanics. A new instrumentation system was designed to allow rapid data collection through varying sample geometries and rock types with a low initial investment. The system is composed of sensors, an ultrasonic pulser, a source switchbox, and analog to digital converters; it is tied together using a LabVIEW virtual instrument. LabVIEW is a graphical development environment for creating test, measurement, and other control applications. Using LabVIEW, virtual instruments (VIs) are created to control or measure a process. In this application LabVIEW was used to create a virtual instrument that was automated to collect the data required to construct a tomogram. Experiments were conducted to calibrate and validate the system for ultrasonic velocity determination and stress redistribution tomography. Calibration was conducted using polymethylmethacrylate (PMMA or Plexiglas) plates. Uniaxial loads were placed on limestone and sandstone samples. The stress-induced density contrasts were then imaged using the acquisition system. The resolution and accuracy of the system is described. The acquisition system presented is a low-cost solution to laboratory geophysical tomography. The ultimate goal of the project is to further the ability to non-invasively image relative stress redistribution in a rock mass, thereby improving the engineer's ability to predict failure. / Master of Science
152

Applications of Double-Difference Tomography for a Deep Hard Rock Mine

Kerr, Jeffrey Bryan 12 December 2011 (has links)
Seismicity at a deep hard rock mine can be a precursor to ground failure events. Seismicity data can be used in double-difference tomography, which produce tomograms showing velocity distributions in the rock mass that can be used to infer relative stress of the rock mass. The data set used for the double-difference tomography inversion was from Creighton Mine in Sudbury, Ontario, Canada, and consisted of two months of data averaging 150 microseismic events per day. Three separate studies were conducted to evaluate the applications of double-difference tomography on a deep hard rock mine. These studies produced mine scale tomograms, stope scale tomograms of two active stopes, and stope scale tomograms for a cluster of events. TomoDD was used for the tomographic inversion, with other commercial programs used to view the results. All three studies produced results consistent with prior mine knowledge and basic concepts of rock mass stress redistribution. Mine scale tomograms accurately displayed a low velocity where the mined ore body is known to be with adjacent high velocity, stope scale tomograms of the two stopes both correctly demonstrated a low velocity relaxed zone near the stope following a production blast, and stope scale tomograms of an event cluster displayed consistency in results for two clusters in periods before, during, and after each cluster. The three studies show that double-difference tomography is a promising tool for observing rock mass stress redistribution that provides a baseline evaluation for the potential uses of the technology in a deep hard rock mine. / Master of Science
153

Analysis of cone beam reconstruction in computer tomography

Zamyatin, Alexander 01 October 2003 (has links)
No description available.
154

Embebed wavelet image reconstruction in parallel computation hardware

Guevara Escobedo, Jorge January 2016 (has links)
In this thesis an algorithm is demonstrated for the reconstruction of hard-field Tomography images through localized block areas, obtained in parallel and from a multiresolution framework. Block areas are subsequently tiled to put together the full size image. Given its properties to preserve its compact support after being ramp filtered, the wavelet transform has received to date much attention as a promising solution in radiation dose reduction in medical imaging, through the reconstruction of essentially localised regions. In this work, this characteristic is exploited with the aim of reducing the time and complexity of the standard reconstruction algorithm. Independently reconstructing block images with geometry allowing to cover completely the reconstructed frame as a single output image, allows the individual blocks to be reconstructed in parallel, and to experience its performance in a multiprocessor hardware reconfigurable system (i.e. FPGA). Projection data from simulated Radon Transform (RT) was obtained at 180 evenly spaced angles. In order to define every relevant block area within the sinogram, forward RT was performed over template phantoms representing block frames. Reconstruction was then performed in a domain beyond the block frame limits, to allow calibration overlaps when fitting of adjacent block images. The 256 by 256 Shepp-Logan phantom was used to test the methodology of both parallel multiresolution and parallel block reconstruction generalisations. It is shown that the reconstruction time of a single block image in a 3-scale multiresolution framework, compared to the standard methodology, performs around 48 times faster. By assuming a parallel implementation, it can implied that the reconstruction time of a single tile, should be very close related to the reconstruction time of the full size and resolution image.
155

On-line electrical impedance tomography for industrial batch processing

Grieve, Bruce Donaldson January 2002 (has links)
This research was originally conceived under the auspices of the UK Government's Foresight Initiative, which aimed to translate the significant body of process tomography knowledge, residing in various British universities, towards applications of generic benefit to industry. In collaboration with the sponsoring life science company, Zeneca Ltd, a number of potential demonstrator projects were identified. Ultimately on-line imaging within pressure filtration was selected by virtue of its direct and broad benefit to the chemical sector and the opportunity to extrapolate the techniques developed towards other batch production processes. The research programme is centred around three empirical studies. These progress from an initial phase, where the early laboratory instrumentation was exposed to a constrained set of filtration conditions, through to the installation of a novel prototype industrial tomography system on to an existing large scale production unit, which was fabricated from an electrically conducting alloy and located in a potentially flammable atmosphere. During the course of these investigations electrical impedance tomography (EIT) was identified as the most viable modality for this class of application. The challenges associated with transferring the EIT technology into the manufacturing environment were addressed by taking advantage of the lenient frame rates acceptable within chemical batch monitoring to develop an instrument structure which was intrinsically safe, suitable for use with earthed metal vessels, tolerant to chemically aggressive media and amenable to three-dimensional image reconstruction via irregular, process compliant, electrode architectures. In the subject production filter a planar sensor array was exploited to provide a relatively uniform electrical field distribution within the process material, whilst not adversely affecting the normal operation of the plant item.
156

Is the validity of non-invasive computerized tomography coronary angiography equivalent to invasive coronary angiography for theevaluation of coronary artery disease

Sitt, Wing-hung, Edward., 薛穎雄. January 2007 (has links)
published_or_final_version / Community Medicine / Master / Master of Public Health
157

Characterizing subsurface hydraulic heterogeneity of alluvial fan using riverstage fluctuations

Wang, Yu-Li, Yeh, Tian-Chyi Jim, Wen, Jet-Chau, Huang, Shao-Yang, Zha, Yuanyuan, Tsai, Jui-Pin, Hao, Yonghong, Liang, Yue 04 1900 (has links)
The objective of this study is to demonstrate the ability of riverstage tomography to estimate 2-D spatial distribution of hydraulic diffusivity (D) of Zhuoshui River alluvial fan, Taiwan, using groundwater level data from 65 wells and stream stage data from 5 gauging stations. In order to accomplish this objective, wavelet analysis is first conducted to investigate the temporal characteristics of groundwater level, precipitation, and stream stage. The results of the analysis show that variations of groundwater level and stream stage are highly correlated over seasonal and annual periods while that between precipitation is less significant. Subsequently, spatial cross-correlation between seasonal variations of groundwater level and riverstage data is analyzed. It is found that the correlation contour map reflects the pattern of sediment distribution of the fan. This finding is further substantiated by the cross-correlation analysis using both noisy and noise-free groundwater and riverstage data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of riverstage tomography is then tested with these synthetic data sets to estimate D distribution. Finally, the riverstage tomography is applied to the alluvial fan. The results of the application reveal that the apex and southeast of the alluvial fan are regions with relatively high D and the D values gradually decrease toward the shoreline of the fan. In addition, D at northern alluvial fan is slightly larger than that at southern. These findings are consistent with the geologic evolution of this alluvial fan. (C) 2017 Elsevier B.V. All rights reserved.
158

Magnetic induction tomography for medical and industrial imaging : hardware and software development

Wei, Hsin-Yu January 2012 (has links)
The main topics of this dissertation are the hardware and the software developments in magnetic induction tomography imaging techniques. In the hardware sections, all the tomography systems developed by the author will be presented and discussed in detail. The developed systems can be divided into two categories, according to the property of the target imaging materials: high conductivity materials and low conductivity materials. Each system has its own suitable application, and each will thus be tested under different circumstances. In terms of the software development, the forward and inverse problems have been studied, including the eddy current problem modeling, sensitivity map formulae derivation and iterative/non-iterative inverse solvers equations. The Biot-Savart Theory was implemented in the ‘two-potential’ method that was used in the eddy current model in order to improve the system’s flexibility. Many different magnetic induction tomography schemes are proposed for the first time in this field of research, their aim being to improve the spatial and temporal resolution of the final reconstructed images. These novel schemes usually involve some modifications of the system hardware and forward/inverse calculations. For example, the rotational scheme can improve the ill-posedness and edge detectability of the system; the volumetric scheme can provide extra spatial resolution in the axial direction; and the temporal scheme can improve the temporal resolution by using the correlation between the consecutive datasets. Volumetric imaging requires an intensive amount of extra computational resources. To overcome the issue of memory constraints when solving large-scale inverse problems, a matrix-free method was proposed, also for the first time in magnetic induction tomography. All the proposed algorithms are verified by the experimental data obtained from suitable tomography systems developed by the author. Although magnetic induction tomography is a new imaging technique, it is believed that the technique is well developed for real-life applications. Several potential applications for magnetic induction tomography are suggested. The initial proof-of-concept study for a challenging low conductivity two-phase flow imaging process is provided. In this thesis, a range of contributions have been made in the field of magnetic induction tomography, which will help the magnetic induction tomography research to be carried on further.
159

Trends in CT abdominal doses in Malaysian practices

Ali, Mohd. Hanafi January 2005 (has links)
Doctor of Health Science / An investigation of clinical Abdominal Computed Tomography (CT)dose, and associated clinical diagnostic protocols, has been ndertaken. This research was carried out to study the pattern of CT dose from routine abdominal examinations in Malaysian practices. From this study it is hoped to establish a Dose Reference Level (DRL) to assist in optimising radiation dose for CT abdominal examination in Malaysia
160

Functional photoacoustic tomography of animal brains

Wang, Xueding 01 November 2005 (has links)
This research is primarily focused on laser-based non-invasive photoacoustic tomography of small animal brains. Photoacoustic tomography, a novel imaging modality, was applied to visualize the distribution of optical absorptions in small-animal brains through the skin and skull. This technique combines the high-contrast advantage of optical imaging with the high-resolution advantage of ultrasonic imaging. Based on the intrinsic optical contrast, this imaging system successfully visualized three-dimensional tissue structures in intact brains, including lesions and tumors in brain cerebral cortex. Physiological changes and functional activities in brains, including cerebral blood volume and blood oxygenation in addition to anatomical information, were also satisfactorily monitored. This technique successfully imaged the dynamic distributions of exogenous contrast agents in small-animal brains. Photoacoustic angiography in small-animal brains yielding high contrast and high spatial resolution was implemented noninvasively using intravenously injected absorbing dyes. In the appendix, the theory of Monte Carlo simulation of polarized light propagation in scattering media was briefly summarized.

Page generated in 0.0368 seconds