Spelling suggestions: "subject:"topologia combinatorial dos grupos"" "subject:"ropologia combinatorial dos grupos""
1 |
Um grupo de Richard Thompson e seu invariante homotopico sigma / A Richard Thompson group and its homotopical sigma invariantRabelo, Lonardo, 1983- 08 May 2008 (has links)
Orientador: Dessislava H. Kochloukova / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T14:04:12Z (GMT). No. of bitstreams: 1
Rabelo_Lonardo_M.pdf: 1106165 bytes, checksum: 2bbac38aebd1bf1d09d9f3bc26c12171 (MD5)
Previous issue date: 2008 / Resumo: Neste projeto de mestrado, estudamos um dos grupos de Richard Thompson e apresentamos os cálculos de seu invariante homotópico Sigma, em qualquer dimensão m, onde m é um inteiro positivo. O grupo de Richard Thompson, denotado por F, foi por ele definido em 1965 e ficou conhecido, mais tarde, por suas propriedades homotópicas e homológicas interessantes. Por exemplo, F é tipo FP8 ([04]). Além disso, F pode ser descrito de maneiras distintas, o que o torna ainda mais interessante. A teoria de invariantes (homotópicos e homológicos) Sigma foi desenvolvida nas últimas décadas do século vinte por R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel e outros e está relacionada com propriedades FPm de grupos. O Invariante _1(F) foi obtido em [03]. Recentemente, o caso geral do invariante _m(F) e _m(F, Z) (homotópico e homológico, respectivamente), m = 2, foi descrito por R. Bieri, R. Geoghegan e D. Kochloukova. Nesta dissertação, apresentamos a versão homotópica deste resultado / Abstract: In this project we study one of the Richard Thompson's Group F e its Homotopical m-dimensional Sigma Invariant. The Richard Thompson Group F is very known by its interesting homological and homotopical properties, for example, it is of type FP8 ([04]). Also, F has the property of being defined in several distinct ways. The Sigma Invariant Theory was developed in last decades of twentieth century by R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel and others and is related to FPm properties of groups. The _1(F) was obtained in [03]. Recently the general case of _m(F) and _m(F, Z) (homotopical and homological versions, respectively), m = 2, were described by R. Bieri, R. Geoghegan and D. Kochloukova. Here, we present the homotopical version of this result / Mestrado / Algebra / Mestre em Matemática
|
Page generated in 0.1337 seconds