• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 11
  • 11
  • 8
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Heavy Graphene Analogue amongst the Bismuth Subiodides as Host for Unusual Physical Phenomena

Rasche, Bertold 22 December 2016 (has links)
This thesis was inspired by the discovery of Bi14Rh3I9, the first so-called weak three-dimensional topological insulator (3D-TI) and has been concerned with the topic of TIs in general. Two aspects were tackled to gain a deeper understanding of this new state of matter. On one hand, the expansion of the material’s basis and on the other hand developing a simple model of the structure and analysing it via density-functional theory (DFT) based methods. To discover new materials, a systematic investigation of the metal-rich parts of the bismuth–platinum-metal–iodine phase systems was conducted. It led to six new phases among the bismuth subiodides. Some of which, e.g. Bi14Rh3I9, share a honeycomb network of platinum-metal-centred bismuth-cubes and are the seed of a family of materials with this structural motive. The others show strand-like structures or layered structures with platinum-platinum bonds. The latter were so far unknown amongst bismuth subiodides. The honeycomb network was separately analysed and shown to host the TI properties. Structurally and electronically it can be seen as a “heavy graphene analogue”, which refers to the fact that graphene with hypothetical strong spin-orbit coupling (“heavy graphene”) was the first TI put forward by theoreticians. Apart from DFT-calculations, physical experiments confirmed the TI properties. Angle-resolved photoelectron spectroscopy (ARPES) was used to verify the electronic structure and scanning tunnelling microscopy and spectroscopy (STM and STS) to reveal the protected 1D edge states present at the cleaving surface of this material. As the arrangement of the honeycomb layer varies between the different known and newly discovered materials within this family of structures, this influence was also investigated. All further materials were also characterised by DFT-calculations and physical experiments, e.g. magnetisation and transport measurements. This thesis might give an experimental and theoretical basis for a deeper understanding of the TI state of matter. The 1D edge states on the surface of Bi14Rh3I9 could be a chance to handle spins and therefore propel spintronic research, or they could host Majorana fermions, which could be used as qubits in quantum computing.
12

All in situ ultra-high vacuum study of Bi2Te3 topological insulator thin films

Höfer, Katharina 24 February 2017 (has links)
The term "topological insulator" (TI) represents a novel class of compounds which are insulating in the bulk, but simultaneously and unavoidably have a metallic surface. The reason for this is the non-trivial band topology, arising from particular band inversions and the spin-orbit interaction, of the bulk. These topologically protected metallic surface states are characterized by massless Dirac dispersion and locked helical spin polarization, leading to forbidden back-scattering with robustness against disorder. Based on the extraordinary features of the topological insulators an abundance of new phenomena and many exciting experiments have been proposed by theoreticians, but still await their experimental verification, not to mention their implementation into applications, e.g. the creation of Majorana fermions, advanced spintronics, or the realization of quantum computers. In this perspective, the 3D TIs Bi2Te3 and Bi2Se3 gained a lot of interest due to their relatively simple electronic band structure, having only a single Dirac cone at the surface. Furthermore, they exhibit an appreciable bulk band gap of up to ~ 0.3 eV, making room temperature applications feasible. Yet, the execution of these proposals remains an enormous experimental challenge. The main obstacle, which thus far hampered the electrical characterization of topological surface states via transport experiments, is the residual extrinsic conductivity arising from the presence of defects and impurities in their bulk, as well as the contamination of the surface due to exposure to air. This thesis is part of the actual effort in improving sample quality to achieve bulk-insulating Bi2Te3 films and study of their electrical properties under controlled conditions. Furthermore, appropriate capping materials preserving the electronic features under ambient atmosphere shall be identified to facilitate more sophisticated ex-situ experiments. Bi2Te3 thin films were fabricated by molecular beam epitaxy (MBE). It could be shown that, by optimizing the growth conditions, it is indeed possible to obtain consistently bulk-insulating and single-domain TI films. Hereby, the key factor is to supply the elements with a Te/Bi ratio of ~8, while achieving a full distillation of the Te, and the usage of substrates with negligible lattice mismatch. The optimal MBE conditions for Bi2Te3 were found in a two-step growth procedure at substrate temperatures of 220°C and 250°C, respectively, and a Bi flux rate of 1 Å/min. Subsequently, the structural characterization by high- and low-energy electron diffraction, photoelectron spectroscopy, and, in particular, the temperature-dependent conductivity measurements were entirely done inside the same ultra-high vacuum (UHV) system, ensuring a reliable record of the intrinsic properties of the topological surface states. Bi2Te3 films with thicknesses ranging from 10 to 50 quintuple layers (QL; 1QL~1 nm) were fabricated to examine, whether the conductivity is solely arising from the surface states. Angle resolved photoemission spectroscopy (ARPES) demonstrates that the chemical potential for all these samples is located well within the bulk band gap, and is only intersected by the topological surface states, displaying the characteristic linear dispersion. A metallic-like temperature dependency of the sheet resistance is observed from the in-situ transport experiments. Upon going from 10 to 50QL the sheet resistance displays a variation by a factor 1.3 at 14K and of 1.5 at room temperature, evidencing that the conductivity is indeed dominated by the surface. Low charge carrier concentrations in the range of 2–4*10^12 cm^−2 with high mobility values up to 4600 cm2/Vs could be achieved. Furthermore, the degradation effect of air exposure on the conductance of the Bi2Te3 films was quantified, emphasizing the necessity to protect the surface from ambient conditions. Since the films behave inert to pure oxygen, water/moisture is the most probable source of degeneration. Moreover, epitaxially grown elemental tellurium was identified as a suitable capping material preserving the properties of the intrinsically insulating Bi2Te3 films and protecting from alterations during air exposure, facilitating well-defined and reliable ex-situ experiments. These findings serve as an ideal platform for further investigations and open the way to prepare devices that can exploit the intrinsic features of the topological surface states.:Abstract Kurzfassung Acronyms List of Symbols Introduction 1 Topological insulators 1.1 Basic theory of topological insulators 1.2 3D topological insulator materials: bismuth chalcogenides 2 Experimental techniques 2.1 General layout of the UHV-system 2.2 Molecular beam epitaxy 2.3 Structural and spectroscopic characterization 2.3.1 RHEED and LEED 2.3.2 Photoelectron spectroscopy 2.3.3 Ex situ x-ray diffraction 2.4 In situ electrical resistance measurements 2.4.1 In situ transport setup 2.4.2 Measurement equipment and operation modes 2.5 Substrates and sample holders 3 MBE growth and structural characterization of Bi2Te3 thin films 3.1 Bi2Te3 growth optimization and in situ structural characterization 3.1.1 1-step growth on Al2O3 (0001) 3.1.2 2-step growth on Al2O3 (0001) 3.1.3 2-step growth on BaF2 (111) 3.2 Ex situ structural characterization 4 In situ spectroscopy and transport properties of Bi2Te3 thin films 4.1 In situ spectroscopy of Bi2Te3 thin films 4.1.1 XPS 4.1.2 ARPES 4.2 Combined ARPES and in situ electrical resistance measurements of bulk-insulating Bi2Te3 thin films 4.2.1 Quality of the in situ electrical sample contacts 4.2.2 Verification of the intrinsic conduction through topological surface states of bulk-insulating Bi2Te3 thin films 5 Effect of surface contaminants on the TI properties 5.1 Effect of air exposure on the electrical conductivity of Bi2Te3 surfaces 5.2 Determination of the contaminants causing degradation of the TI properties 5.3 Long-time resistance behavior of a Bi2Te3 film exposed to minimal traces of contaminants 6 Protective capping of bulk-insulating Bi2Te3 thin films 6.1 Capping with BaF2 6.1.1 MBE growth and structure of BaF2 on Bi2Te3 thin films 6.1.2 Electron spectroscopy and electrical transport properties of BaF2 capped Bi2Te3 6.2 Capping with tellurium 6.2.1 MBE growth and structure of Te on Bi2Te3 thin films 6.2.2 Photoelectron spectroscopy and electrical transport properties of Te capped Bi2Te3 6.2.3 De-capping of Te 6.2.4 Efficiency of Te capping against air exposure 7 Conclusion and outlook Bibliography Versicherung Curriculum vitae Veröffentlichungen / Der Begriff "Topologischer Isolator" (TI) beschreibt eine neuartige Klasse von Verbindungen deren Inneres (engl. Bulk) isolierend ist, dieses Innere aber gleichzeitig und zwangsläufig eine metallisch leitende Oberfläche aufweist. Dies ist begründet in der nicht-trivialen Topologie dieser Materialien, welche durch eine spezielle Invertierung einzelner Bänder in der Bandstruktur und der Spin-Bahn-Kopplung im Materialinneren hervorgerufen ist. Diese topologisch geschützten, metallischen Oberflächenzustände sind gekennzeichnet durch eine masselose Dirac Dispersionsrelation und gekoppelte Helizität der Spinpolarisation, welche die Rückstreuung der Ladungsträger verbietet und somit zur Stabilisierung der Zustände gegenüber Störungen beiträgt. Auf Grundlage dieser außergewöhnlichen Merkmale haben Theoretiker eine Fülle neuer Phänomene und spannender Experimente vorhergesagt. Deren experimentelle Überprüfung steht jedoch noch aus, geschweige denn deren Umsetzung in Anwendungen, wie zum Beispiel die Erzeugung von Majorana Teilchen, fortgeschrittene Spintronik, oder die Realisierung von Quantencomputern. Aufgrund ihrer relativ einfachen Bandstruktur, welche nur einen Dirac-Kegel an der Oberfläche aufweist, haben die 3D TI Bi2Te3 und Bi2Se3 in den letzten Jahren großes Interesse erlangt. Weiterhin besitzen diese Materialien eine merkliche Bandlücke von bis zu ~0,3 eV, welche sogar Anwendungen bei Raumtemperatur ermöglichen könnten. Dennoch ist deren experimentelle Umsetzung nachwievor eine enorme Herausforderung. Das Haupthindernis, welches bis jetzt insbesondere die elektrische Charakterisierung the topologischen Oberflächenzustände behindert hat, ist die zusätzliche Leitfähigkeit des Materialinneren, welche durch Kristalldefekte und Beimischungen, sowie die Verunreinigung der Probenoberfläche durch Luftexposition bedingt wird. Die vorliegende Arbeit liefert einen Beitrag zu aktuellen den Anstrengungen in der Verbesserung der Probenqualität der TI um die Leitfähigkeit des Materialinneren zu unterdrücken, sowie die anschließende Untersuchung der elektrischen Eigenschaften unter kontrollierten Bedingungen durchzuführen. Weiterhin sollen geeignete Deckschichten identifiziert werden, welche die besonderen elektronischen Merkmale der TI nicht beeinflussen sowie diese gegen äußere Einflüsse schützen, und somit die Durchführung anspruchsvoller ex situ Experimente ermöglichen können. Die untersuchten Bi2Te3 Schichten wurden mittels Molekularstrahlepitaxie (MBE) hergestellt. Es konnte gezeigt werden, dass es allein durch Optimierung der Wachstumsbedingungen möglich ist Proben herzustellen, die gleichbleibend isolierende Eigenschaften des TI Inneren aufweisen und Eindomänen-Ausrichtung besitzen. Die zentralen Faktoren sind hierbei die Aufrechterhaltung eines Flussratenverhältnisses von Te/Bi ~8 der einzelnen Elemente, sowie die Wahl einer ausreichend hohen Substrattemperatur, um ein vollständiges Abdampfen (Destillation) des überschüssigen Tellur zu erreichen. Weiterhin müssen Substrate mit gut angepassten Gitterparametern verwendet werden, welches bei BaF2 (111) gegeben ist. Optimales MBE Wachstum konnte durch ein Zwei-Stufen Prozess bei Substrattemperaturen von 220°C und 250°C und einer Bi-Verdampfungsrate von 1 Å/min erreicht werden. Die nachfolgende Charakterisierung der strukturellen Eigenschaften, Photoelektronenspektroskopie, sowie temperaturabhängige Leitfähigkeitsmessungen wurden alle in einem zusammenhängenden Ultrahochvakuum-System durchgeführt. Auf diese Weise wird eine zuverlässige Erfassung der intrinsischen Eigenschaften der TI sichergestellt. Zur Überprüfung, ob die Leitfähigkeit der Proben tatsächlich nur durch die Oberflächenzustände hervorgerufen wird, wurden Filme mit Schichtdicken im Bereich von 10 bis 50 Quintupel-Lagen (QL; 1QL~ 1 nm) hergestellt und charakterisiert. Winkelaufgelöste Photoelektronenspektroskopie (ARPES) belegt, dass das chemische Potential (Fermi-Niveau) in allen Proben innerhalb der Bandlücke der Bandstruktur des Materialinneren liegt und nur von den topologisch geschützten Oberflächenzuständen gekreuzt wird, welche die charakteristische lineare Dirac Dispersionsrelation aufweisen. Die temperaturabhängigen Widerstandsmessungen zeigen ein metallisches Verhalten aller Proben. Bei der Variation der Schichtdicke von 10 zu 50QL wird eine Streuung des Flächenwiderstandes vom Faktor 1,3 bei 14K und 1,5 bei Raumtemperatur beobachtet. Dies beweist, dass die gemessene Leitfähigkeit vorrangig durch die topologisch geschützten Oberflächenzustände hervorgerufen wird. Eine geringe Oberflächenladungsträgerkonzentration im Bereich von 2–4*10^12 cm^−2 und hohe Mobilitätswerte von bis zu 4600 cm2/Vs wurden erreicht. Weiterhin wurden die negativen Auswirkungen auf die Eigenschaften der TI durch Luftexposition quantifiziert, welches die Notwendigkeit belegt, die Oberfläche der TI vor Umgebungseinflüssen zu schützen. Die Proben verhalten sich inert gegenüber reinem Sauerstoff, daher ist Wasser aus der Luftfeuchte höchstwahrscheinlich der Hauptgrund für die beobachtbare Verschlechterung. Darüber hinaus konnte epitaktisch gewachsenes Tellur als geeignete Deckschicht ausfindig gemacht werden, welches die Eigenschaften der Bi2Te3 Filme nicht beeinflusst, sowie gegen Veränderungen durch Luftexposition schützt. Die gewonnenen Erkenntnisse stellen eine ideale Grundlage für weiterführende Untersuchungen dar und ebnen den Weg zur Entwicklung von Bauelementen welche die spezifischen Besonderheiten der topologischen Oberflächenzustände.:Abstract Kurzfassung Acronyms List of Symbols Introduction 1 Topological insulators 1.1 Basic theory of topological insulators 1.2 3D topological insulator materials: bismuth chalcogenides 2 Experimental techniques 2.1 General layout of the UHV-system 2.2 Molecular beam epitaxy 2.3 Structural and spectroscopic characterization 2.3.1 RHEED and LEED 2.3.2 Photoelectron spectroscopy 2.3.3 Ex situ x-ray diffraction 2.4 In situ electrical resistance measurements 2.4.1 In situ transport setup 2.4.2 Measurement equipment and operation modes 2.5 Substrates and sample holders 3 MBE growth and structural characterization of Bi2Te3 thin films 3.1 Bi2Te3 growth optimization and in situ structural characterization 3.1.1 1-step growth on Al2O3 (0001) 3.1.2 2-step growth on Al2O3 (0001) 3.1.3 2-step growth on BaF2 (111) 3.2 Ex situ structural characterization 4 In situ spectroscopy and transport properties of Bi2Te3 thin films 4.1 In situ spectroscopy of Bi2Te3 thin films 4.1.1 XPS 4.1.2 ARPES 4.2 Combined ARPES and in situ electrical resistance measurements of bulk-insulating Bi2Te3 thin films 4.2.1 Quality of the in situ electrical sample contacts 4.2.2 Verification of the intrinsic conduction through topological surface states of bulk-insulating Bi2Te3 thin films 5 Effect of surface contaminants on the TI properties 5.1 Effect of air exposure on the electrical conductivity of Bi2Te3 surfaces 5.2 Determination of the contaminants causing degradation of the TI properties 5.3 Long-time resistance behavior of a Bi2Te3 film exposed to minimal traces of contaminants 6 Protective capping of bulk-insulating Bi2Te3 thin films 6.1 Capping with BaF2 6.1.1 MBE growth and structure of BaF2 on Bi2Te3 thin films 6.1.2 Electron spectroscopy and electrical transport properties of BaF2 capped Bi2Te3 6.2 Capping with tellurium 6.2.1 MBE growth and structure of Te on Bi2Te3 thin films 6.2.2 Photoelectron spectroscopy and electrical transport properties of Te capped Bi2Te3 6.2.3 De-capping of Te 6.2.4 Efficiency of Te capping against air exposure 7 Conclusion and outlook Bibliography Versicherung Curriculum vitae Veröffentlichungen
13

Unitary aspects of Hermitian higher-order topological phases

Franca, Selma 01 March 2022 (has links)
Robust states exist at the interfaces between topologically trivial and nontrivial phases of matter. These boundary states are expression of the nontrivial bulk properties through a connection dubbed the bulk-boundary correspondence. Whether the bulk is topological or not is determined by the value of a topological invariant. This quantity is defined with respect to symmetries and dimensionality of the system, such that it takes only quantized values. For static topological phases that are realized in ground-states of isolated, time-independent systems, the topological invariant is related to the properties of the Hamiltonian operator. In contrast, Floquet topological phases that are realized in open systems with periodical pumping of energy are topologically characterized with a unitary Floquet operator i.e., the time-evolution operator over the entire period. Topological phases of matter can be distinguished by the dimensionality of robust boundary states with respect to the protecting bulk. This dissertation concerns recently discovered higher-order topological phases where the difference between dimensionalities of bulk and boundary states is larger than one. Using analytical and numerical single-particle techniques, we focus on instances where static higher-order topology can be understood with insights from the mature field of Floquet topology. Namely, even though static systems do not admit a Floquet description, we find examples of higher-order systems to which certain unitary operators can be attributed. The understanding of topological characteristics of these systems is therefore conditioned by the knowledge on topological properties of unitary operators, among which the Floquet operator is well-known. The first half of this thesis concerns toy models of static higher-order topological phases that are topologically characterized in terms of unitary operators. We find that a class of these systems called quadrupole topological insulators exhibit a wider range of topological phases than known previously. In the second half of this dissertation, we study reflection matrices of higher-order topological phases and show that they can exhibit the same topological features as Floquet systems. Our findings suggest a new route to experimental realizations of Floquet systems, the one that avoids noise-induced decoherence inevitable in many other experimental setups.

Page generated in 0.0822 seconds