Spelling suggestions: "subject:"porque por transfer?ncia dde spin"" "subject:"porque por transfer?ncia dee spin""
1 |
Estudo da densidade de corrente cr?tica para revers?o da magnetiza??o de nanoelementos ferromagn?ticosSouza, Rafaela Medeiros de 16 March 2015 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-02-05T22:57:33Z
No. of bitstreams: 1
RafaelaMedeirosDeSouza_DISSERT.pdf: 16368490 bytes, checksum: 32187a14cfce1f59c3e74840bc7d851a (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-02-16T21:42:19Z (GMT) No. of bitstreams: 1
RafaelaMedeirosDeSouza_DISSERT.pdf: 16368490 bytes, checksum: 32187a14cfce1f59c3e74840bc7d851a (MD5) / Made available in DSpace on 2016-02-16T21:42:19Z (GMT). No. of bitstreams: 1
RafaelaMedeirosDeSouza_DISSERT.pdf: 16368490 bytes, checksum: 32187a14cfce1f59c3e74840bc7d851a (MD5)
Previous issue date: 2015-03-16 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico - CNPq / A descoberta de que uma corrente el?trica ? capaz de exercer um torque em um material
ferromagn?tico, atrav?s da transfer?ncia de momento angular de spin, pode proporcionar
o desenvolvimento de novos dispositivos tecnol?gicos que armazenam informa??o a partir da
dire??o da magnetiza??o. A redu??o da densidade de corrente para revers?o da magnetiza??o
? primordial para potenciais aplica??es em c?lulas de mem?rias magn?ticas de acesso aleat?-
rio n?o vol?teis (MRAM). Apresentamos uma investiga??o te?rica dos efeitos de forma e do
campo de dipolar na densidade de corrente cr?tica para revers?o da magnetiza??o, via torque
por transfer?ncia de spin (STT), em nanoelementos ferromagn?ticos. O sistema nanoestruturado
consiste em uma camada de refer?ncia, na qual a corrente ser? polarizada em spin, e uma
camada livre de revers?o da magnetiza??o. Observamos consider?veis varia??es na densidade
de corrente cr?tica em fun??o da espessura da camada de revers?co ( ? t = 1.0 nm, 1.5 nm, 2.0 nm
e 2.5 nm) e da geometria do nanoelemento (circular e el?ptico), do tipo de material que comp?e
a camada livre do sistema (Ferro e Permalloy) e de acordo com a orienta??o da magnetiza??o
e da polariza??o em spin com o eixo maior. Mostramos que a densidade de corrente cr?tica
pode ser reduzida em cerca de 50% diminuindo a espessura da camada livre de Fe e em 75% ao
modificar a magnetiza??o de satura??o de nanoelementos circulares com 2.5 nm de espessura.
Observamos, ainda, uma redu??o de at? 90% na densidade de corrente de revers?o para nanoelementos
ultrafinos magnetizados ao longo da dire??o do eixo menor, usando a polariza??o no
plano paralela ? magnetiza??o. / The discovery that a spin-polarized current is capable of exerting a torque in a ferromagnetic
material, through spin transfer, might provide the development of new technological
devices that store information via the direction of magnetization. The reduction of current
density to revert the magnetization is a primary issue to potential applications on non volatile
random access memories (MRAM). We report a theorical study of the dipolar and shape effects
on the critical current density for reversal of magnetization, via spin transfer torque (STT), on
ferromagnetic nanoelements. The nanostructured system consists on a reference layer, in which
the current will be spin-polarized, and a free layer of magnetization reversal. We observed considerable
changes on the critical current density as a function of the element?s reversion layer
thickness (t = 1.0 nm, 1.5 nm, 2.0 nm e 2.5 nm) and geometry (circular and elliptical), the
material kind of the system free layer (Iron and Permalloy) and according to the orientation
of the magnetization and the spin polarization with the major axis. We show that the critical
current density may be reduced about 50% by reducing the Fe free layer thickness and around
75% when we change the saturation magnetization of circular nanoelements with 2.5 nm of
thickness. We still observed a reduction as much as 90% on the current density of reversion for
thin nanoelements magnetized along the minor axis direction, using in-plane spin polarization
parallel to the magnetization.
|
Page generated in 0.1385 seconds