• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Early Wing Structural Design for Stiffness and Frequency Response

January 2018 (has links)
abstract: This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly impact the stiffness of the structure. The impacts of design choices and how the buckling constraints drive structural weight in particular examples are discussed. The model is then carried further to include a finite element model (FEM) to analyze resulting mode shapes and frequencies for use in aeroelastic analysis. The natural frequencies of several selected wing torque boxes across a range of loading cases are compared. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2018
2

Design, Analysis And Optimization Of Thin Walled Semi-monocoque Wing Structures Using Different Structural Idealizations In The Preliminary Design Phase

Dababneh, Odeh 01 October 2011 (has links) (PDF)
This thesis gives a comprehensive study on the effect of using different structural idealizations on the design, analysis and optimization of thin walled semi-monocoque wing structures in the preliminary design phase. In the design part, wing structures are designed by employing two different structural idealizations that are typically used in the preliminary design phase. In the structural analysis part, finite element analysis of one of the designed wing configurations is performed using six different one and two dimensional element pairs which are typically used to model the sub-elements of semi-monocoque wing structures. The effect of using different finite element types on the analysis results of the wing structure is investigated. During the analysis study, depending on the mesh size used, conclusions are also inferred with regard to the deficiency of certain element types in handling the true external load acting on the wing structure. Finally in the optimization part, wing structure is optimized for minimum weight by using finite element models which have the same six different element pairs used in the analysis phase. The effect of using different one and two dimensional element pairs on the final optimized configurations of the wing structure is investigated, and conclusions are inferred with regard to the sensitivity of the optimized wing configurations with respect to the choice of different element types in the finite element model. Final optimized wing structure configurations are also compared with the simplified method based designs which are also optimized iteratively. Based on the results presented in the thesis, it is concluded that with the simplified methods, preliminary sizing of the wing structures can be performed with enough confidence, as long as the simplified method based designs are also optimized. Results of the simplified method of analysis showed that simplified method is applicable to be used as an analysis tool in performing the preliminary sizing of the wing structure before moving on to more refined finite element based analysis.

Page generated in 0.0278 seconds