• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hot-wire chemical vapor deposition of silicon nitride thin films

Adams, Abdulghaaliq January 2013 (has links)
Magister Scientiae - MSc / Amorphous silicon nitride (a-SiN:H) thin films has a multitude of applications, stemming from the tunability of the material properties. Plasma enhanced chemical vapour deposition (PECVD) is the industrial workhorse for production of device quality a-SiN:H. However, this technique has drawbacks in terms of film quality, rooting from ion bombardment, which then results in undesirable oxidation. Hot wire chemical vapour deposition (HWCVD) has shown to be a viable competitor to its more costly counterpart, PECVD. A thin film produced by HWCVD lacks ion bombardment due to the deposition taking place in the absence of plasma. This study will focus on optimising the MVsystems ® HWCVD chamber at The University of the Western Cape, for production of device quality a-SiN:H thin films at low processing parameters. The effect of these parameters on the structural, optical and morphological properties was investigated, for reduction of production costs. The films were probed by heavy ion elastic recoil detection, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, Xray diffraction, and ultraviolet visible spectroscopy. It was shown that silicon rich, device quality a-SiN:H thin films could be produced by HWCVD at wire temperatures as low as 1400 °C and the films showed considerable resistance to oxidation in the bulk.

Page generated in 0.0586 seconds