• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Economic feasibility of an integrated semi-batch reactive distillation operation for the production of methyl decanoate

Aqar, D.Y., Mujtaba, Iqbal 28 March 2022 (has links)
Yes / The formation of methyl decanoate (MeDC) by esterification reaction of decanoic acid with methanol through batch/continuous reactive distillation columns is operationally challenging, energy intensive and thus cost intensive operation due to complex thermodynamic behaviour of the reaction scheme. Aiming to overcome the equilibrium restriction of the decanoic acid (DeC) esterification operation, to improve the process efficiency and to reduce the total annualised cost (TAC), the semi-batch distillation column (SBD) and the recently proposed integrated semi-batch distillation column configuration (i-SBD) are investigated here. The performances of each of these column operations are evaluated in terms of minimum TAC for a given separation task. In both column configurations, additional operating constraints are considered into the optimization problem to prevent flooding of still pot due to the continuous charging of methanol into it. This study shows the superiority of i-SBD mode of operation over SBD operation in terms of TAC. Also, the optimization results for a defined separation task indicate that the performance of multi-interval control policy is overwhelmingly superior to the single-interval control operation in terms of operating batch time, and overall annual cost in the i-SBD system providing about a time saving of 82.75%, and cost (TAC) saving of 36.61% for a MeDC (product) concentration of 0.945 molefraction.

Page generated in 0.078 seconds