• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feeding Strategy Development For Benzaldehyde Lyase Production By Recombinant Escherichia Coli Bl21

Levent, Hande 01 June 2008 (has links) (PDF)
This study focuses on the molasses based complex medium design for benzaldehyde lyase production by recombinant E. coli BL21 and development of a feeding strategy based on the designed complex medium. For this purpose, firstly, the effects of molasses were investigated in laboratory scale bioreactors. As E. coli BL21 was not able to utilize sucrose, molasses was pretreated and hydrolyzed to fructose and glucose. Thereafter, effect of pretreated molasses concentration was investigated in the range of 16 to 56 kg m-3 by batch-bioreactor experiments / and the highest cell concentration and benzaldehyde lyase activity were obtained as CX=5.3 kg m-3 and A=1617 U cm-3, respectively, in the medium containing 7.5 kg m-3 glucose and 7.5 kg m-3 fructose. Then, different feeding strategies were developed to produce efficient cells with high concentration and BAL activity. In the first strategy, after 10 hours of batch-cultivation with molasses based medium having 7.5 kg m-3 glucose and 7.5 kg m-3 fructose concentration, based on the airflow rate, pretreated molasses was fed to the system. When air flow rate decreased considerably, fed was given to the system that results in increase in glucose and fructose concentration in the medium to 2.5 kg m-3. At the end of the process, the highest cell concentration obtained was CX=7.4 kg m-3. The maximum activity was reached at 20th hour as A=2360 U cm-3. On the other hand, as air flow variation only demonstrated the absence of glucose not fructose, a second strategy, based on the detection of the fructose and glucose concentrations during the process, was applied. In this strategy when glucose and fructose were depleted, fed was given to the system that results in increase in glucose and fructose concentration in the medium to 2.5 kg m-3 / and the highest BAL activity was obtained as 2370 U cm-3 at t= 26 h where the cell concentration was 7.5 kg m-3. At the last strategy, when glucose and fructose were depleted, fed was given to the system that results in increase in CGlucose=1.5 kg m-3 and CFructose=1.5 kg m-3 in the production medium to decrease the accumulation of acetic acid. By this strategy highest cell concentration was obtained as 8.04 kg m-3 at t=24 h and the highest BAL activity was 2315 U cm-3. These strategies could be accepted having the same BAL activity with little distinctions. However, cell concentration of the last one was higher than others and also the lowest amount of carbon source was used. Thus, last one could be chosen as the most favorable strategy.
2

Exponential Feeding Strategy Development For Benzaldehyde Lyase Production By Recombinant Escherichia Coli

Taspinar, Hatice 01 August 2010 (has links) (PDF)
In this study, the aim was to investigate the effects of exponential feeding strategy on benzaldehyde lyase (BAL) production by recombinant Escherichia coli BL21. For this purpose, the effects of medium components were investigated to optimize the initial medium composition of the fed-batch fermentations. For the batch bioreactor operations, the highest cell concentration and BAL activity were achieved in a media containing 30 g L-1 pretreated molasses, and 5 g L-1 (NH4)2HPO4 as 5.07 g L-1, and 1611 U ml-1 at t=8 h, respectively. Thereafter, in order to increase the cell growth and BAL production while avoiding acetate accumulation, fed-batch bioreactor operations were conducted with exponential feeding at different specific growth rates namely, 0.1 h-1 (mu-0.1), 0.15 h-1 (mu-0.15), and 0.2 h-1 (mu-0.2), and a combined exponential and constant feeding (mu-0.2+) strategy. In the experiments, 9 hours of batch-wise operation with the optimized production medium was followed by a fed-batch operation phase using the pre-determined exponential feeding profiles and for mu-0.2+ operation after 10 hours of exponential feeding as mu-0.2, where the feed rate was kept constant at 21.6 g h-1. Additionally, the plasmid stability was investigated using the feeding method of mu-0.2+ operation with antibiotics in the feed solution, and it was observed that the plasmid was stable. Among the three exponential feeding conditions, the highest cell concentration and BAL activity were determined in
3

Economic feasibility of an integrated semi-batch reactive distillation operation for the production of methyl decanoate

Aqar, D.Y., Mujtaba, Iqbal M. 28 March 2022 (has links)
Yes / The formation of methyl decanoate (MeDC) by esterification reaction of decanoic acid with methanol through batch/continuous reactive distillation columns is operationally challenging, energy intensive and thus cost intensive operation due to complex thermodynamic behaviour of the reaction scheme. Aiming to overcome the equilibrium restriction of the decanoic acid (DeC) esterification operation, to improve the process efficiency and to reduce the total annualised cost (TAC), the semi-batch distillation column (SBD) and the recently proposed integrated semi-batch distillation column configuration (i-SBD) are investigated here. The performances of each of these column operations are evaluated in terms of minimum TAC for a given separation task. In both column configurations, additional operating constraints are considered into the optimization problem to prevent flooding of still pot due to the continuous charging of methanol into it. This study shows the superiority of i-SBD mode of operation over SBD operation in terms of TAC. Also, the optimization results for a defined separation task indicate that the performance of multi-interval control policy is overwhelmingly superior to the single-interval control operation in terms of operating batch time, and overall annual cost in the i-SBD system providing about a time saving of 82.75%, and cost (TAC) saving of 36.61% for a MeDC (product) concentration of 0.945 molefraction.
4

Bioprocess Development For Thermostable Glucose Isomerase Production

Angardi, Vahideh 01 December 2011 (has links) (PDF)
In this study, process development for glucose isomerase (GI) was aimed. In this context, firstly, thermostable xyl genes, PCR amplified from Thermus thermophilus and Pyrococcus furiosus cells, were recombined to the E.coli BL21 (DE3) and P.pastoris strains, respectively. But significant increase in the term of GI activity compared with wild type cells only detected in recombinant E.coli strain so this strain was selected for further experiments. Then, the effect of different natural and artificial inducers on the production of rGI under control of LacUV5 promoter was investigated in laboratory-scale bioreactors. Lactose was shown to be more efficient in the term of operon induction for long time bioprocesses. Thereafter, in order to increase thermostable rGI production rate, to achieve high cell density culture of E.coli BL21 (DE3) pLysS pRSETA::xylT as well as to evade acetate accumulation, the effect of exponential feeding strategy of carbon source on the production of thermostable GI enzyme, cell concentration and acetate formation by recombinant E.coli BL21 (DE3) pLysS was investigated at four sets of fed-batch bioreactor experiments at three different predetermined specific growth rates 0.1 h-1 (M-0.1), 0.15 h-1 (M-0.15), 0.2 h-1 (M-0.2) and a glucose based exponential feeding at specific growth rate of 0.15 h-1(G-0.15) were performed by recombinant E.coli BL21 (DE3) pLysS cells. The highest biomass was obtained in M-0.15 condition as 9.6 kg m&minus / 3 at t=32 h and the highest rGI activity was achieved in M-0.1 operation as A=16399 U L-1 at t=32 h of bioprocess. Moreover, peptide ligand with specific affinity toward histidin-tag peptide was selected by phage display technology. Isothermal titration calorimetry and surface plasmon resonance analyses were carried out to determine peptide-peptide interaction properties.

Page generated in 0.1024 seconds