• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 780
  • 271
  • 229
  • 97
  • 36
  • 30
  • 30
  • 30
  • 30
  • 30
  • 30
  • 24
  • 17
  • 16
  • 14
  • Tagged with
  • 1916
  • 807
  • 350
  • 286
  • 171
  • 148
  • 147
  • 141
  • 136
  • 130
  • 128
  • 111
  • 100
  • 96
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

The significance of enzyme activities in wetland biogeochemistry

Kang, Hojeong January 1999 (has links)
No description available.
192

A multidisciplinary study of human exposure to arsenic and other trace elements

Cascio, Claudia January 2011 (has links)
Arsenic (As) is a carcinogenic agent that is present in varying levels in environmental matrices including water and food. Long term As exposure can lead to skin lesions, peripheral neuropathy, diabetes, renal system effects and cardiovascular diseases. Bio-monitoring of human urine, toenail, serum and cerebrospinal fluid was carried out in this thesis to assess the exposure to arsenic and other trace elements. A multidisciplinary approach based on Inductively Coupled Plasma Mass Spectrometry (ICP-MS), HPLC-ICP-MS and Proton-Nuclear Magnetic Resonance Spectroscopy (1H-NMR) in conjunction with a questionnaire based survey was employed. The impact of rice consumption (a well-known vector of arsenic in the general population) on human urinary As levels was assessed. Results obtained show that the Bangladeshi (UK-B) community in the United Kingdom, who consume ca. 30-fold more rice than the white Caucasians (UK-C), are exposed to a higher level of arsenic. ICP-MS and HPLC-ICP-MS revealed a significant increase in dimethylarsinic acid (DMA) and inorganic arsenic (iAs) species in UK-B compared to UK-C, while cationic compounds were lower in UK-B than in UK-C. DMA and iAs levels in the Bangladeshis were positively correlated to rice consumption. Rice is likely to be responsible for the increase in levels of DMA and iAs in urine of UK-B. The link between this and the disproportional occurrence of diabetes and cardiovascular diseases (CVD) in UK-B needs to be investigated. Another important finding of this study is that the DMA to monomethyl arsenic (MA) ratio, which is often used as an indication of arsenic methylation capacity, should be applied with caution in populations consuming large quantities of rice because variation in the quantity and type of rice eaten may alter the urinary DMA levels and thereby the DMA/MA ratio. Urinary arsenic, selenium, copper and zinc were monitored for a group of Bangladeshis, Pakistanis, Indians and Caucasians living in the UK. The most striking finding was the increase in urinary copper in the UK-B group compared to other ethnicities and to reference values reported for the general UK population. Among the possible reasons for this could include dietary exposure via ethnic food consumption or a change in copper metabolism in the Bangladeshis. High serum copper levels have been correlated to CVD in the US population. In this context, further work is recommended to investigate if there is a relationship between urinary copper and the disproportionately high incidence of CVD in UK Bangladeshis. An approach based on 1H-NMR was used to detect changes in human urinary metabolomic profile as a function of As exposure through different routes. For this, the urine of UK-B, UK-C and a group residing in Bangladesh (BD-B) were monitored. The effects of other factors were explored, including arsenic urinary profile, chewing pan, ethnicity, rice consumption, selenium and diabetes. The three populations show distinctive metabolomic profiles. Urinary arsenic speciation was used in evaluating the effects of arsenic on the metabolomic profile for the UK group. This revealed that the %DMA positively correlates to %N,N-dymethylglycine, %alanine and %betaine. Comparative analysis of the 1H NMR spectra revealed that the BD-B urinary profiles were depleted in the number and quantity of metabolites. Visible signs of lower protein intake and undernourishment emerged from the urinary metabolomic profile of BD-B including a 2.5 decrease in creatinine levels compared to UK-B. Urinary creatinine and the metabolomic profile provide evidence for undernourishment in the BD-B population group that was not evident from previous studies on dietary protein intake in this population performed using food frequency questionnaires. Public health officials might consider also using bio-monitoring studies for nutrient intake rather than solely relying on estimations from food frequency questionnaires. The results reveal the complexity of the subject and pave the way for future studies, highlighting the need for awareness about diet and other specific confounding factors. Multiple Sclerosis (MS) is considered a multifactorial disease and its cause remains unknown. A case-control study on a MS cluster from the volcanic region of Mt. Etna (a natural emitter of geogenic trace elements in the environment) was undertaken. Urine and toenails were monitored for trace elements along with food consumption and life-style habits. Levels of a range of trace elements were reported for the first time for a population living in the Mt. Etna region. No significant differences were found in trace element levels in urine and toenails of MS patients and controls. However, urinary levels of nickel, manganese and selenium were higher than those reported in the literature for the general population from Italy, Germany and the UK. These findings and observations might suggest a role for nickel in the pathology of MS. However, larger studies on the possible role of nickel on MS, and trace elements in general, should be performed. Cerebrospinal fluid (CSF) and some serum from MS patients and controls from the Mt. Etna region were also monitored in this study using ICP-MS. There were significant differences in the trace elemental profile of CSF of MS volunteers and controls, including an increase in arsenic and zinc in the CSF of MS patients. Lead, aluminium, cadmium and molybdenum were significantly increased in the CSF of MS patients as well. In contrast, selenium was lower in MS patients compared to controls. The enrichment of certain trace elements in the CSF of MS patients could be the result of an impairment of the blood brain barrier and tight junction disruption due to MS and its progression, resulting in serum protein leakage and trace elements across the blood–brain barrier. Studies are necessary in the future to identify the chemical species present in the CSF and also determine their role in biological processes including their harmful effects on the brain.
193

Remote sensing in refractive turbulence

Lemos Pinto, J. de January 1986 (has links)
No description available.
194

Fortification Renaissance: the Roman Origins of the Trace Italienne

Vigus, Robert T. 05 1900 (has links)
The Military Revolution thesis posited by Michael Roberts and expanded upon by Geoffrey Parker places the trace italienne style of fortification of the early modern period as something that is a novel creation, borne out of the minds of Renaissance geniuses. Research shows, however, that the key component of the trace italienne, the angled bastion, has its roots in Greek and Roman writing, and in extant constructions by Roman and Byzantine engineers. The angled bastion of the trace italienne was yet another aspect of the resurgent Greek and Roman culture characteristic of the Renaissance along with the traditions of medicine, mathematics, and science. The writings of the ancients were bolstered by physical examples located in important trading and pilgrimage routes. Furthermore, the geometric layout of the trace italienne stems from Ottoman fortifications that preceded it by at least two hundred years. The Renaissance geniuses combined ancient bastion designs with eastern geometry to match a burgeoning threat in the rising power of the siege cannon.
195

Geochemistry of eclogites from Western Norway : implications from high-precision whole-rock and rutile analyses

Wilkinson, Darren James January 2015 (has links)
The Western Gneiss Region (WGR) in Norway is home to some of the world’s most spectacular exposures of high pressure (HP) and ultrahigh pressure (UHP) eclogites. Despite extensive petrological studies into their pressure, temperature and time (PTt) histories, relatively few have reported on their trace element compositions. Such data can be used to supplement our understanding of the provenance and history of Norwegian eclogites, as well as to further our understanding of trace element fluxes during HP to UHP metamorphism in subduction zone settings. In order to address this shortfall in data availability, the first step was to investigate and apply the best dissolution techniques for preparing eclogite samples for chemical analysis. Eclogites commonly contain up to a few weight percent rutile (TiO2), which is known to be an important host for a variety of major and trace elements (e.g. Ti, Nb and Ta). However, typical rock digestion procedures are incapable of dissolving rutile, and thus may lead to inaccurate measurements. It was found that that total dissolution of rutile can be achieved by dissolving samples in sealed pressure vessels at increased pressures and temperatures, ultimately leading to greatly increased data accuracy for analyses of any rutile-bearing lithology. The solutions were analysed by standard ICP-MS techniques and the results compared to analyses of powders by XRF spectrometry. Our high-accuracy and high-precision data were subjected to immobile trace element discriminant analyses that suggested eclogites belonged to three broad geochemical groups: eclogites with mid ocean ridge Basalt (MORB)-like composition; eclogites with arc-like composition; and eclogites with geochemical signatures significantly perturbed by metamorphism. The geochemistry of eclogites in the first two groups are shown to likely reflect protolith composition, and as such we used model protolith compositions to calculate estimated element mobilities (EMMs) for those elements considered relatively mobile during metamorphism. It was not possible to determine protoliths for eclogites in the third category using trace elements alone. Finally, the trace element geochemistry of a large number of separated eclogite-hosted rutiles was studied. The data collected were used to demonstrate that rutile contains significant amounts of the whole-rock’s high field strength element (HFSE) budget, and may exert significant control on the HFSE composition of passing hydrothermal fluids. Furthermore, Zr-in-rutile thermometry (ZRT) was applied to separated rutiles. This temperature information was used to better our understanding of the thermal history of the WGR, as well as to create a map of eclogite temperatures in the Nordfjord-Statlandet area. This high-resolution thermal map of arguably the most important area of the WGR, supports current interpretations that during the Caledonian Orogeny the leading edge of the Baltica plate was consumed in a northwest to north-northwest-dipping subduction zone under Laurentia. Furthermore, isotherms on this map mimic several major fold hinges in the region rather well, thus providing support to the hypothesis that such structures were most likely formed during the collapse of the Scandinavian Caledonian Orogen after the peak metamorphism of most eclogites.
196

Investigation of Zn-bound proteins in alfalfa using ZN??

Reynolds, Warren Dudley. January 1957 (has links)
Call number: LD2668 .T4 1957 R46 / Master of Science
197

Trace element incorporation in silicate melts and glasses at high pressure

de Grouchy, Charlotte J. L. January 2017 (has links)
Trace elements are highly fractionated during large-scale melting associated with planetary differentiation events. The resulting partition coefficients are used to constrain a range of geological processes and are known to be influenced by pressure, temperature, and compositional changes in crystalline structures. Although recent studies have shown that melt compositional changes affect the partitioning of trace elements, the degree to which these ratios are influenced by alterations in the melt structure, especially with increasing pressure, is poorly constrained due to the difficulty of collecting structural information on bonding environments in situ. A basic understanding of how these elements are incorporated in silicate melts is critical to interpreting early planetary differentiation and crust forming events. This thesis presents results from both x-ray diffraction and absorption techniques on trace element (Y, Zr, Lu and Nd) incorporation in silicate melt structures. The structure of two rare Earth element doped model end member silicate liquids, a highly polymerised haplogranite (Si- Al-Na-K-O) and a less polymerised anorthite-diopside (Si-Al-Mg-Ca-O), have been studied. The results are the first to identify trace rare Earth element (REE) incorporation in silicate melts at high pressure using x-ray diffraction techniques. The local melt structure around Y and Zr in a highly polymerised haplogranite has been studied using x-ray absorption spectroscopy up to 8GPa and 1650 K. Both elements appear to adopt 8-fold coordination within the melt structure with no variation over the pressure range studied. This was also found for the Lu bonding environment in the same composition where the coordination number of Lu-O was found to be 8, with a bond distance rLu-O = 2:36A in the haplogranite melt. At low pressures, < 5GPa, the bonding environment of Lu-O was found to be dependent on composition with coordination decreasing to CNLu-O = 6 and rLu-O = 2:29A in the anorthite-diopside melt. This compositional variance in coordination number at low pressure is consistent with observations made for Y-O in glasses at ambient conditions and is coincident with a dramatic increase in the partition coefficients previously observed for rare Earth elements (REE) with increasing melt polymerisation. However, an abrupt change in both Lu-O coordination and bond distance is observed at 5GPa in the anorthite-diopside melt, with CNLu-O increasing from 6 to 8-fold and rLu-O from 2.29 to 2.39A. This occurs over a similar pressure range where a reduction in the reported heavy REE partition coefficients is observed. X-ray diffraction experiments up to 60GPa and 2000K have also been performed on the incorporation of the larger light REE, Nd, in basaltic-like melts. The results presented show that incorporation within the anorthite-diopside composition is dependent on the size of the REE. Nd-O initially shows the same 6-fold coordination as Lu-O at ambient conditions, although the change to 8-fold coordination appears to occur at considerably lower pressure between 1-2GPa. Coordination change in both cases can be attributed to collapse of the silicate network and an increase in the average number of available 'crystal like' sites in the liquid, with ionic radius of the REE controlling at which pressure the preference for these sites in the melt occurs. Published mineral-melt partition coefficients for Nd, with major mineral phases such as garnet, show very little variation with pressure, in contrast to Lu. The difference in structural incorporation of Lu and Nd in the melts presented in this thesis could explain this partitioning behaviour. Overall this thesis highlights that important structural changes of the trace element bonding environment in silicate melts occur with both compositional variation and pressure. Melt structural changes with pressure cannot be neglected in predictive models of trace element behaviour, and using a single melt term to normalise the effects of melt on trace element partitioning will not accurately predict partitioning behaviour at depth during magma formation or differentiation.
198

Risk eDecisions : online behaviour and decision making from the iGeneration to the 'silver surfer'

White, Claire May January 2017 (has links)
Since the inception of the Internet there has been immense growth in the number of internet users worldwide, and the integration of social media in our daily lives has become commonplace for many. Yet, alongside the many benefits of this global connectivity come numerous risks. Research shows that individuals of all ages are exposed to, and engage in, risky activities online, despite numerous campaigns to highlight the perils of risky online behaviour. Although the rates of victimisation increase year-on-year, surprisingly little is known about the psychological mechanisms underlying online risk-taking. The work in this thesis aimed to address this gap in the psychological literature by conducting empirical research focussing on online risky behaviour and decision making across the lifespan. Four studies, conducted with individuals ranging in age from 13- to 79-years-old, investigated two online risk-taking behaviours, personal information disclosure and friending strangers, within the framework of Fuzzy Trace Theory. A further study investigated the posting of risky and inappropriate content online in British and Italian students, examining the role of self-monitoring and impulsivity. The work in this thesis reveals that Fuzzy Trace Theory is able to predict risk-taking and risk-averse behavioural intentions, and that the retrieval of gist-based, intuitive beliefs and values about online risk reduces risk-taking behaviour and intentions, whereas representing risk in a quantitative-based, verbatim manner leads to increased risk-taking intentions. The ability to reason using gist representations increases with age. Additionally, high self-monitoring was found to predict risky posting behaviour across different cultures. These findings offer a novel and important contribution to our theoretical and practical knowledge about risky online behaviour, and have the potential to inform the development of more effective online safety intervention programmes.
199

A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms

Guerreiro, João Leitão January 2016 (has links)
We study the problem of the distribution of certain GL(3) Maass forms, namely, we obtain a Weyl’s law type result that characterizes the distribution of their eigenvalues, and an orthogonality relation for the Fourier coefficients of these Maass forms. The approach relies on a Kuznetsov trace formula on GL(3) and on the inversion formula for the Lebedev-Whittaker transform. The family of Maass forms being studied has zero density in the set of all GL(3) Maass forms and contains all self-dual forms. The self-dual forms on GL(3) can also be realised as symmetric square lifts of GL(2) Maass forms by the work of Gelbart-Jacquet. Furthermore, we also establish an explicit inversion formula for the Lebedev-Whittaker transform, in the nonarchimedean case, with a view to applications.
200

A local relative trace formula for spherical varieties

Filip, Ioan January 2016 (has links)
Let F be a local non-Archimedean field of characteristic zero. We prove a Plancherel formula for the symmetric space GL(2,F)\GL(2,E), where E/F is an unramified quadratic extension. Our method relies on intrinsic geometric and combinatorial properties of spherical varieties and constitutes the local counterpart of the global computation of the Flicker-Rallis period as a residue of periods against Eisenstein series. We also give a novel derivation of the Plancherel formula for the strongly tempered variety T\PGL(2) over F (with maximal split torus T) using a canonical smooth asymptotics morphism and a contour shifting method. In this rank one local setting, our proof is similar to Langlands' proof over global fields describing the spectrum of a reductive group in terms of residues of Eisenstein series. Finally, using both L2-decompositions, we develop a local relative trace formula and outline a comparison result in the setting of the unitary rank one Gan-Gross-Prasad conjecture.

Page generated in 0.0439 seconds