• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 34
  • 24
  • 23
  • 18
  • 17
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

System modeling for connected and autonomous vehicles

Jian Wang (5930372) 17 January 2019 (has links)
<p>Connected and autonomous vehicle (CAV) technologies provide disruptive and transformational opportunities for innovations toward intelligent transportation systems. Compared with human driven vehicles (HDVs), the CAVs can reduce reaction time and human errors, increase traffic mobility and will be more knowledgeable due to vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. CAVs’ potential to reduce traffic accidents, improve vehicular mobility and promote eco-driving is immense. However, the new characteristics and capabilities of CAVs will significantly transform the future of transportation, including the dissemination of traffic information, traffic flow dynamics and network equilibrium flow. This dissertation seeks to realize and enhance the application of CAVs by specifically advancing the research in three connected topics: (1) modeling and controlling information flow propagation within a V2V communication environment, (2) designing a real-time deployable cooperative control mechanism for CAV platoons, and (3) modeling network equilibrium flow with a mix of CAVs and HDVs. </p> <p>Vehicular traffic congestion in a V2V communication environment can lead to congestion effects for information flow propagation due to full occupation of the communication channel. Such congestion effects can impact not only whether a specific information packet of interest is able to reach a desired location, but also the timeliness needed to influence traffic system performance. This dissertation begins with exploring spatiotemporal information flow propagation under information congestion effects, by introducing a two-layer macroscopic model and an information packet relay control strategy. The upper layer models the information dissemination in the information flow regime, and the lower layer model captures the impacts of traffic flow dynamics on information propagation. Analytical and numerical solutions of the information flow propagation wave (IFPW) speed are provided, and the density of informed vehicles is derived under different traffic conditions. Hence, the proposed model can be leveraged to develop a new generation of information dissemination strategies focused on enabling specific V2V information to reach specific locations at specific points in time.</p> <p>In a V2V-based system, multiclass information (e.g., safety information, routing information, work zone information) needs to be disseminated simultaneously. The application needs of different classes of information related to vehicular reception ratio, the time delay and spatial coverage (i.e., distance it can be propagated) are different. To meet the application needs of multiclass information under different traffic and communication environments, a queuing strategy is proposed for each equipped vehicle to disseminate the received information. It enables control of multiclass information flow propagation through two parameters: 1) the number of communication servers and 2) the communication service rate. A two-layer model is derived to characterize the IFPW under the designed queuing strategy. Analytical and numerical solutions are derived to investigate the effects of the two control parameters on information propagation performance in different information classes. </p> <p>Third, this dissertation also develops a real-time implementable cooperative control mechanism for CAV platoons. Recently, model predictive control (MPC)-based platooning strategies have been developed for CAVs to enhance traffic performance by enabling cooperation among vehicles in the platoon. However, they are not deployable in practice as they require anembedded optimal control problem to be solved instantaneously, with platoon size and prediction horizon duration compounding the intractability. Ignoring the computational requirements leads to control delays that can deteriorate platoon performance and cause collisions between vehicles. To address this critical gap, this dissertation first proposes an idealized MPC-based cooperative control strategy for CAV platooning based on the strong assumption that the problem can be solved instantaneously. It then develops a deployable model predictive control with first-order approximation (DMPC-FOA) that can accurately estimate the optimal control decisions of the idealized MPC strategy without entailing control delay. Application of the DMPC-FOA approach for a CAV platoon using real-world leading vehicle trajectory data shows that it can dampen the traffic oscillation effectively, and can lead to smooth deceleration and acceleration behavior of all following vehicles.</p> <p>Finally, this dissertation also develops a multiclass traffic assignment model for mixed traffic flow of CAVs and HDVs. Due to the advantages of CAVs over HDVs, such as reduced value of time, enhanced quality of travel experience, and seamless situational awareness and connectivity, CAV users can differ in their route choice behavior compared to HDV users, leading to mixed traffic flows that can significantly deviate from the single-class HDV traffic pattern. However, due to a lack of quantitative models, there is limited knowledge on the evolution of mixed traffic flows in a traffic network. To partly bridge this gap, this dissertation proposes a multiclass traffic assignment model. The multiclass model captures the effect of knowledge level of traffic conditions on route choice of both CAVs and HDVs. In addition, it captures the characteristics of mixed traffic flow such as the difference in value of time between HDVs and CAVs and the asymmetry in their driving interactions, thereby enhancing behavioral realism in the modeling. New solution algorithms will be developed to solve the multiclass traffic assignment model. The study results can assist transportation decision-makers to design effective planning and operational strategies to leverage the advantages of CAVs and manage traffic congestion under mixed traffic flows.</p> <p>This dissertation deepens our understanding of the characteristics and phenomena in domains of traffic information dissemination, traffic flow dynamics and network equilibrium flow in the age of connected and autonomous transportation. The findings of this dissertation can assist transportation managers in designing effective traffic operation and planning strategies to fully exploit the potential of CAVs to improve system performance related to traffic safety, mobility and energy consumption. </p>
42

A schedule-based transit network model

Tong, C. O. (Chung On), 1945- January 1986 (has links)
For thesis abstract select View Thesis Title, Contents and Abstract
43

Equilibrium models accounting for uncertainty and information provision in transportation networks

Unnikrishnan, Avinash, 1980- 18 September 2012 (has links)
Researchers in multiple areas have shown that characterizing and accounting for the uncertainty inherent in decision support models is critical for developing more efficient planning and operational strategies. This is particularly applicable for the transportation engineering domain as most strategic decisions involve a significant investment of money and resources across multiple stakeholders and has a considerable impact on the society. Moreover, most inputs to transportation models such as travel demand depend on a number of social, economic and political factors and cannot be predicted with certainty. Therefore, in recent times there has been an increasing emphasis being placed on identifying and quantifying this uncertainty and developing models which account for the same. This dissertation contributes to the growing body of literature in tackling uncertainty in transportation models by developing methodologies which address the uncertainty in input parameters in traffic assignment models. One of the primary sources of uncertainty in traffic assignment models is uncertainty in origin destination demand. This uncertainty can be classified into long term and short term demand uncertainty. Accounting for long term demand uncertainty is vital when traffic assignment models are used to make planning decisions like where to add capacity. This dissertation quantifies the impact of long term demand uncertainty by assigning multi-variate probability distributions to the demand. In order to arrive at accurate estimates of the expected future system performance, several statistical sampling techniques are then compared through extensive numerical testing to determine the most "efficient" sampling techniques for network assignment models. Two applications of assignment models, network design and network pricing are studied to illustrate the importance of considering long term demand uncertainty in transportation networks. Short term demand uncertainty such as the day-to-day variation in demand affect traffic assignment models when used to make operational decisions like tolling. This dissertation presents a novel new definition of equilibrium when the short term demand is assumed to follow a probability distribution. Various properties of the equilibrium such as existence, uniqueness and presence of a mathematical programming formulation are investigated. Apart from demand uncertainty, operating capacity in real world networks can also vary from day to day depending on various factors like weather conditions and incidents. With increasing deployment of Intelligent Transportation Systems, users get information about the impact of capacity or the state of the roads through various dissemination devices like dynamic message signs. This dissertation presents a new equilibrium formulation termed user equilibrium with recourse to model information provision and capacity uncertainty, where users learn the state or capacity of the link when they arrive at the upstream node of that link. Depending on the information received about the state of the upstream links, users make different route choice decisions. In this work, the capacity of the links in the network is assumed to follow a discrete probability distribution. A mathematical programming formulation of the user equilibrium with recourse model is presented along with solution algorithm. This model can be extended to analytically model network flows under information provision where the arcs have different cost functional form depending on the state of the arc. The corresponding system optimal with recourse model is also presented where the objective is minimize the total system cost. The network design problem where users are routed according to the user equilibrium with recourse principle is studied. The focus of this study is to show that planning decisions for networks users have access to information is significantly different from the no-information scenario. / text
44

Routing Map Topology Analysis and Application

Zhu, Lei January 2014 (has links)
The transportation routing map is increasingly used in various transportation network modeling applications such as vehicle navigation and traffic assignment modeling. A typical navigation GIS map contains all detailed road facility layers and may not be as computationally efficient as a lower-resolution map for path finding. A lower-resolution transportation routing map retains only route-finding related roadways and is efficient for path finding but may result in sub-optimal routes because of misclassification links. With the goal in balancing the traffic analysis requirement of intended application and computation requirements of transportation navigation and traffic assignment, the systematic abstraction of the lower-resolution transportation routing map from high resolution map is an important and non-trivial task. For vehicle navigation applications, the traffic analysis requirement is the shortest path quality. An innovative transportation routing map abstraction method or Connectivity Enhancement Algorithm (CEA) is proposed to deal with vehicle navigation application routing map abstraction. The algorithm starts from a low-resolution network and keeps updating the map by adding links and nodes when it processes each search set. The outcome of the algorithm is an abstract map that retains the original detailed map's hierarchical structure with quality topological connectivity at a significant computations saving. With the development of traffic assignment modeling, a detailed network is desired to describe the real world traffic network. It is the consensus that one should not directly apply a GIS map blind-sight without a systematic approach and unnecessarily overuse the network details causes excessive run time. The traffic analysis requirement of those applications is the dynamic user equilibrium (DUE) condition network performance is identical or near-identical with high resolution network. The lowest network resolution level that meets the requirements of emerging traffic analysis is not easy to determine. The proposed traffic analysis network abstraction method gives a solution for this problem. It is an iterative network abstraction approach and considers the link travel time with DUE traffic condition. The case study and numerical analysis prove that the two network abstraction methods are sound and promising. The transportation routing map abstraction method could detect most misclassification links and is robust for different network scales. The abstracted navigation map provides the identical or near-identical SP cost/travel time for any OD pair while the computation burden is much lighter than that on original map. In another hand, the case studies about the traffic analysis network abstraction tell that the method converges very quick and the rendered the abstracted network that has lowest resolution of network or least links and nodes but the DUE condition network performance or trips cost/travel time is much closer to that on the original map.
45

Efficient Algorithms for the Cell Based Single Destination System Optimal Dynamic Traffic Assignment Problem

Zheng, Hong January 2009 (has links)
The cell transmission model (CTM) based single destination system optimal dynamic traffic assignment (SD-SO-DTA) model has been widely applied to situations such as mass evacuations on a transportation network. Although formulated as a linear programming (LP) model, embedded multi-period cell network representation yields an extremely large model for real-size networks. As a result, most of these models are not solvable using existing LP solvers. Solutions obtained by LP also involve holding vehicles at certain locations, violating CTM flow dynamics. This doctoral research is aimed at developing innovative algorithms that overcome both computational efficiency and solution realism issues. We first prove that the LP formulation of the SD-SO-DTA problem is equivalent to the earliest arrival flow (EAF), and then develop efficient algorithms to solve EAF. Two variants of the algorithm are developed under different model assumptions and network operating conditions. For the case of time-varying network parameters, we develop a network flow algorithm on a time-expanded network. The main challenge in this approach is to address the issue of having backward wave speed lower than forward wave speed. This situation leads to non-typical constraints involving coefficients with value of less than 1. In this dissertation we develop a new network algorithm to solve this problem in optimal, even with coefficients of value less than 1. Additionally, the developed approach solves for optimal flows that exhibit non-vehicle-holding properties, which is a major breakthrough compared to all existing solution techniques for SD-SODTA. For the case of time-invariant network parameters, we reduce the SD-SO-DTA to a standard EAF problem on a dynamic network, which is constructed on the original roadway network without dividing it into cells. We prove that the EAF under free flow status is one of the optimal solutions of SD-SO-DTA, if cell properties follow a trapezoidal/triangular fundamental diagram. We use chain flows obtained on a static network to induce dynamic flows, an approach applicable to large-scale networks. Another contribution of this research is to provide a simple and practical algorithm solving the EAF with multiple sources, which has been an active research area for many years. Most existing studies involve submodular function optimization as subroutines, and thus are not practical for real-life implementation. This study’s contribution in this regard is the development of a practical algorithm that avoids submodular function optimization. The main body of the given method is comprised of |S⁺| iterations of earliest arrival s - t flow computations, where |S⁺| is the number of sources. Numerical results show that our multi-source EAF algorithm solves the SD-SO-DTA problem with time-invariant parameters to optimum.
46

Traffic Assignment In Transforming Networks Case Study: Ankara

Zorlu, Fikret 01 February 2006 (has links) (PDF)
This study investigates the relevance of dynamic traffic assignment models under uncertainty. In the last years researchers have dealt with advanced traffic control systems since road provision is not regarded as a proper solution to relieve congestion. Dynamic assignment which is an essential component of investment planning is regarded as a new research area in the field of urban transportation. In this study the performance of dynamic traffic assignment method, which incorporates time dependent flow, is compared with that of static model. Research outcomes showed that dynamic assignment method provides more reliable outcomes in predicting traffic flow / therefore its solution algorithm is integrated to conventional four staged model. Literature survey showed that researches have hot provided an appropriate framework for transforming networks. This study investigates travel demand variations in a dynamic city and discuses possible strategies to respond dynamic and uncertain properties of individuals&rsquo / travel behavior. Research findings showed that both external and internal uncertainties have significant influences on reliability of the model. Recommended procedure aims reducing uncertainty in order to improve reliability of model. Finally, the relevancy of the problem and the applicability of recently developed methods are discussed in Ankara case.
47

Analysis of traffic spatial shift resulting from optimal signal timing and special generators

Dikun, Suyono. January 1988 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1988. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 192-198).
48

A new behavioral principle for travelers in an urban network : final report

January 1981 (has links)
Stanley B. Gershwin, David M. Orlicki, Yacov Zahavi. / Cover title. "October 1981." Contract no. DTRS-57-80-C-00012. Performing organizations: Mobility Systems, Inc. and Massachusetts Institute of Technology, Laboratory for Information and Decision Systems. Under contract to the Transportation Systems Center. / Includes bibliographical references.
49

Um método biobjetivo de alocação de tráfego para veículos convencionais e elétricos / A bi-objective method of traffic assignment for conventional and electric vehicles

Souza, Marcelo de January 2015 (has links)
A busca de soluções para a mobilidade urbana que minimizem a agressão do setor de tráfego e transportes ao meio ambiente está cada vez maior. Os veículos elétricos se posicionam como uma alternativa interessante, pois reduzem a emissão de gases poluentes na atmosfera, a poluição sonora e o consumo de petróleo. No entanto, sua limitada autonomia e a escassez de postos de recarga intimidam sua adoção. Por conta disso, políticas governamentais de incentivo têm sido desenvolvidas para a oferta de benefícios a quem optar por um veículo elétrico. Estima-se que dentro de poucas décadas toda a frota urbana será substituída por veículos dessa natureza. Por isso, é importante entender as mudanças no tempo de viagem e no consumo de energia oriundos da inclusão de veículos elétricos em cenários de tráfego. Trabalhos anteriores estudaram as diferenças entre os mecanismos internos de veículos convencionais e elétricos na determinação destas mudanças. Porém, dadas as características destes últimos, motoristas de veículos elétricos se preocupam com a economia de energia e podem optar por rotas diferentes. Logo, uma análise completa destes impactos deve considerar uma nova distribuição de tráfego. Este trabalho propõe um método biobjetivo de alocação de tráfego que considera o tempo de viagem e o consumo de energia para determinar a distribuição de veículos elétricos em cenários de tráfego urbano. Duas estratégias de distribuição de fluxo são propostas como mecanismos de escolha de rotas. Como parte da alocação de tráfego, é proposto um algoritmo biobjetivo de caminhos mínimos para veículos elétricos. A abordagem apresentada foi aplicada a três cenários distintos, onde percebeu-se uma diminuição de até 80% no consumo total de energia. Em cenários com congestionamento, observou-se um aumento de 10% no tempo de viagem. Já em cenários sem congestionamento o tempo de viagem diminuiu cerca de 2%. A recuperação de energia representa quase 6% da economia total dos veículos elétricos. Além disso, experimentos mostraram que investimentos na eficiência dos veículos elétricos podem resultar em uma economia de até 15% de energia. / The search for urban mobility solutions that minimize the aggression to the environment is increasing. Electric vehicles are an attractive alternative because they reduce greenhouse gas emissions, noise pollution, and oil consumption. However, their limited autonomy and the lack of charging stations restrict their popularization. Therefore, government incentive policies have been developed in order to offer benefits to those who choose an electric vehicle. It is estimated that the entire urban fleet will be replaced by these vehicles in a few decades. Therefore, it is important to understand the changes in travel time and energy consumption from the inclusion of electric vehicles in traffic scenarios. Previous works determined these changes by studying the differences between the internal engine of conventional and electric vehicles. However, given the characteristics of the latter, drivers of electric vehicles care about saving energy and may want to choose different routes. Thus, a complete analysis of these impacts should consider a redistribution of traffic. This work proposes a bi-objective traffic assignment method that considers the travel time and the energy consumption to determine the distribution of electric vehicles in urban traffic scenarios. We introduce two strategies for flow distribution as models of route choice. As a procedure of the traffic assignment method, we propose a bi-objective shortest path algorithm for electric vehicles. Our approach was applied to three different scenarios, which resulted in a decrease of up to 80% in total energy consumption. In congested scenarios, we observe an increase of about 10% in average travel time. In uncongested scenarios, travel time decreases about 2%. Energy recovery is almost 6% of the total savings of electric vehicles. Moreover, experiments have shown that investments in the efficiency of electric vehicles can result in up to 15% of energy savings.
50

Um método biobjetivo de alocação de tráfego para veículos convencionais e elétricos / A bi-objective method of traffic assignment for conventional and electric vehicles

Souza, Marcelo de January 2015 (has links)
A busca de soluções para a mobilidade urbana que minimizem a agressão do setor de tráfego e transportes ao meio ambiente está cada vez maior. Os veículos elétricos se posicionam como uma alternativa interessante, pois reduzem a emissão de gases poluentes na atmosfera, a poluição sonora e o consumo de petróleo. No entanto, sua limitada autonomia e a escassez de postos de recarga intimidam sua adoção. Por conta disso, políticas governamentais de incentivo têm sido desenvolvidas para a oferta de benefícios a quem optar por um veículo elétrico. Estima-se que dentro de poucas décadas toda a frota urbana será substituída por veículos dessa natureza. Por isso, é importante entender as mudanças no tempo de viagem e no consumo de energia oriundos da inclusão de veículos elétricos em cenários de tráfego. Trabalhos anteriores estudaram as diferenças entre os mecanismos internos de veículos convencionais e elétricos na determinação destas mudanças. Porém, dadas as características destes últimos, motoristas de veículos elétricos se preocupam com a economia de energia e podem optar por rotas diferentes. Logo, uma análise completa destes impactos deve considerar uma nova distribuição de tráfego. Este trabalho propõe um método biobjetivo de alocação de tráfego que considera o tempo de viagem e o consumo de energia para determinar a distribuição de veículos elétricos em cenários de tráfego urbano. Duas estratégias de distribuição de fluxo são propostas como mecanismos de escolha de rotas. Como parte da alocação de tráfego, é proposto um algoritmo biobjetivo de caminhos mínimos para veículos elétricos. A abordagem apresentada foi aplicada a três cenários distintos, onde percebeu-se uma diminuição de até 80% no consumo total de energia. Em cenários com congestionamento, observou-se um aumento de 10% no tempo de viagem. Já em cenários sem congestionamento o tempo de viagem diminuiu cerca de 2%. A recuperação de energia representa quase 6% da economia total dos veículos elétricos. Além disso, experimentos mostraram que investimentos na eficiência dos veículos elétricos podem resultar em uma economia de até 15% de energia. / The search for urban mobility solutions that minimize the aggression to the environment is increasing. Electric vehicles are an attractive alternative because they reduce greenhouse gas emissions, noise pollution, and oil consumption. However, their limited autonomy and the lack of charging stations restrict their popularization. Therefore, government incentive policies have been developed in order to offer benefits to those who choose an electric vehicle. It is estimated that the entire urban fleet will be replaced by these vehicles in a few decades. Therefore, it is important to understand the changes in travel time and energy consumption from the inclusion of electric vehicles in traffic scenarios. Previous works determined these changes by studying the differences between the internal engine of conventional and electric vehicles. However, given the characteristics of the latter, drivers of electric vehicles care about saving energy and may want to choose different routes. Thus, a complete analysis of these impacts should consider a redistribution of traffic. This work proposes a bi-objective traffic assignment method that considers the travel time and the energy consumption to determine the distribution of electric vehicles in urban traffic scenarios. We introduce two strategies for flow distribution as models of route choice. As a procedure of the traffic assignment method, we propose a bi-objective shortest path algorithm for electric vehicles. Our approach was applied to three different scenarios, which resulted in a decrease of up to 80% in total energy consumption. In congested scenarios, we observe an increase of about 10% in average travel time. In uncongested scenarios, travel time decreases about 2%. Energy recovery is almost 6% of the total savings of electric vehicles. Moreover, experiments have shown that investments in the efficiency of electric vehicles can result in up to 15% of energy savings.

Page generated in 0.0735 seconds