Spelling suggestions: "subject:"trailing edges"" "subject:"trailing adges""
1 |
Aerodynamics of transonic turbine trailing edgesMelzer, Andrew Philip January 2018 (has links)
No description available.
|
2 |
Generation of Downstream Vorticity Through the Use of Modified Trailing Edge ConfigurationsWorrall, Benjamin Nida 08 June 2010 (has links)
Detailed measurements were taken downstream of several modified trailing edge configurations designed to impart streamwise velocity into the flow behind a cascade of GE Rotor B fan blades. These measurements were conducted in the Virginia Tech Low Speed Linear Cascade wind tunnel. The trailing edge configurations tested utilized passive techniques for producing streamwise vorticity, which in turn causes downstream wake diffusion and increased mixing. A more diffuse wake, when it impinges on the downstream stator, will produce lower noise levels as a result of this rotor-stator interaction. Furthermore, increased mixing in the flow will reduce the levels of turbulence kinetic energy observed downstream of the blade trailing edge. Thus, this project seeks to identify which passive techniques of imparting streamwise vorticity are most effective at improving the flow characteristics responsible for some of the noise production in modern jet aircraft.
The three trailing edge configurations tested in detail for this project showed significant ability to widen and stretch the downstream wake by utilizing vorticity generation techniques. The TE-8 configuration was the most effective at increasing the wake width downstream of the trailing edge. Additionally, each configuration was able to successfully reduce some of the turbulence kinetic energy levels observed downstream when compared to the baseline blade, the most effective configuration being TE-8. Finally, the momentum thickness of each configuration was measured. When compared to the baseline, the TE-1 configuration showed an increased momentum thickness, TE-8 showed little change, and TE-7 actually showed an improved momentum thickness value. / Master of Science
|
3 |
Unsteady airfoil flow control via a dynamically deflected trailing-edge flapGerontakos, Panayiote January 2008 (has links)
No description available.
|
4 |
The Effect of Shear Sheltering on Trailing Edge Noise: A Theoretical StudyUnknown Date (has links)
Shear sheltering is defined as the effect of the mean flow velocity profile in a boundary layer on the turbulence caused by an imposed gust. In aeroacoustic applications turbulent boundary layers interacting with blade trailing edges or roughness elements are an important source of sound, and the effect of shear sheltering on these noise sources has not been studied in detail. Since the surface pressure spectrum below the boundary layer is the primary driver of trailing edge and roughness noise, this thesis considers the effect that shear sheltering has on the surface pressure spectrum below a boundary layer. This study presents a model of the incoming turbulence as a vortex sheet at a specified height above the surface and shows, using canonical boundary layers and approximations to numerical results, how the mean flow velocity profile can be manipulated to alter the surface pressure spectrum and hence the associated trailing edge noise. The results from this model demonstrate that different mean velocity profiles drive significant changes in the unsteady characteristics of the flow. The surface pressure fluctuations results also suggest that boundary layers where the shear in the mean velocity profile is significant can be beneficial for the reduction of trailing edge noise at particular frequencies. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
|
5 |
Dynamic control of aerodynamic forces on a moving platform using active flow controlBrzozowski, Daniel Paul 15 November 2011 (has links)
The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2-3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.
|
Page generated in 0.0752 seconds