• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DERAILMENT RISK ASSESSMENT

Wagner, Simon John, simonjwagner@gmail.com January 2004 (has links)
There is a large quantity of literature available on longitudinal train dynamics and risk assessment but nothing that combines these two topics. This thesis is focused at assessing derailment risks developed due to longitudinal train dynamics. A key focus of this thesis is to identify strategies that can be field implemented to correctly manage these risks. This thesis quantifies derailment risk and allows a datum for comparison. A derailment risk assessment on longitudinal train dynamics was studied for a 107 vehicle train consist travelling along the Monto and North Coast Lines in Queensland, Australia. The train consisted of 103 wagons and 4 locomotives with locomotives positioned in groups of two in lead and mid train positions. The wagons were empty hopper wagons on a track gauge of 1067mm. The scenarios studied include: the effect of longitudinal impacts on wagon dynamics in transition curves; and the effects of longitudinal steady forces on wagon dynamics on curves. Simulation software packages VAMPIRE and CRE-LTS were used. The effects of longitudinal impacts from in-train forces on wagon dynamics in curves were studied using longitudinal train simulation and detailed wagon dynamics simulation. In-train force impacts were produced using a train control action. The resulting worst-case in-train forces resulting from these simulations were applied to the coupler pin of the wagon dynamics simulation model. The wagon model was used to study the effect of these in-train forces when applied in curves and transitions at an angle to the wagon longitudinal axis. The effects of different levels of coupler impact forces resulting from different levels of coupling slack were also studied. Maximum values for wheel unloading and L/V ratio for various curve radii and coupler slack conditions were identified. The results demonstrated that the derailment criteria for wheel unloading could be exceeded for a coupler slack of 50mm and 75mm on sharper curves, up to 400m radii. A detailed study of the effect of steady in-train forces on wagon dynamics on curves also was completed. Steady in-train forces were applied to a three wagon model using VAMPIRE. Maximum and minimum values of wheel unloading and L/V ratio were identified to demonstrate the level of vehicle stability for each scenario. The results allowed the worse cases of wheel unloading and L/V ratio to be studied in detail. Probability density functions were constructed for the occurrence of longitudinal forces and coupler angles for the Monto and North Coast Lines. Data was simulated for a coupler slack of 25, 50 and 75mm and force characteristics were further classified into the occurrences of impact and non-impact forces. These probability density functions were analysed for each track section to investigate the effects of coupler slack, track topography and gradient on wagon dynamics. The possible wagon instability in each of these scenarios was then assessed to give a measure of the potential consequences of the event. Risk assessment techniques were used to categorise levels of risk based on the consequences and likelihood of each event. It was found that for the train configuration simulated, the Monto Line has a higher derailment risk than the North Coast Line for many of the scenarios studies in this thesis. For a coupler slack of 25mm no derailment risks were identified, 50mm coupler slack derailment risks were only identified on the Monto track and the majority of derailment risks were identified for a 75mm coupler slack.
2

Řešení dynamiky pohonné jednotky ve vozidle / Solution of Powertrain Dynamics in Vehicle

Hodas, David January 2014 (has links)
The main aim of this diploma thesis is to evaluate and select the most appropriate option how to mount a power unit in Formula Student vehicle. It assesses an overall dynamic behaviour of a drive unit mounted in student formula. At the end of the final thesis is an assessment of proposed engine mount variants. The study of parameters that most influence engine vibrations can be seen there.
3

Vliv pružnosti rozvodového mechanismu na pohyb ventilu / Influence of the Valve Train Flexibility to the Single Valve Motion

Řehůřek, Lukáš January 2016 (has links)
The aim of this thesis is a comparing single valve train motion (SVT) and complete valve train motion with a flexible camshaft focused on dynamic characteristics. In this thesis is also performed kinematics analysis in the VALKIN software. Dynamic analysis is solved in the MBS software Virtual Engine. Influences to the valve train motion are described in the conclusion
4

Dynamic Braking Control for Accurate Train Braking Distance Estimation under Different Operating Conditions

Ahmad, Husain Abdulrahman 28 March 2013 (has links)
The application of Model Reference Adaptive Control (MRAC) for train dynamic braking is investigated in order to control dynamic braking forces while remaining within the allowable adhesion and coupler forces.  This control method can accurately determine the train braking distance.  One of the critical factors in Positive Train Control (PTC) is accurately estimating train braking distance under different operating conditions.  Accurate estimation of the braking distance will allow trains to be spaced closer together, with reasonable confidence that they will stop without causing a collision.  This study develops a dynamic model of a train consist based on a multibody formulation of railcars, trucks (bogies), and suspensions.   The study includes the derivation of the mathematical model and the results of a numerical study in Matlab.  A three-railcar model is used for performing a parametric study to evaluate how various elements will affect the train stopping distance from an initial speed.  Parameters that can be varied in the model include initial train speed, railcar weight, wheel-rail interface condition, and dynamic braking force.  Other parameters included in the model are aerodynamic drag forces and air brake forces. An MRAC system is developed to control the amount of current through traction motors under various wheel/rail adhesion conditions while braking.  Minimizing the braking distance of a train requires the dynamic braking forces to be maximized within the available wheel/rail adhesion.  Excessively large dynamic braking can cause wheel lockup that can damage the wheels and rail.  Excessive braking forces can also cause large buff loads at the couplers.  For DC traction motors, an MRAC system is used to control the current supplied to the traction motors.  This motor current is directly proportional to the dynamic braking force.  In addition, the MRAC system is also used to control the train speed by controlling the synchronous speed of the AC traction motors.  The goal of both control systems for DC and AC traction motors is to apply maximum available dynamic braking while avoiding wheel lockup and high coupler forces.  The results of the study indicate that the MRAC system significantly improves braking distance while maintaining better wheel/rail adhesion and coupler dynamics during braking.  Furthermore, according to this study, the braking distance can be accurately estimated when MRAC is used.  The robustness of the MRAC system with respect to different parameters is investigated, and the results show an acceptable robust response behavior. / Ph. D.
5

Stochastic model of high-speed train dynamics for the prediction of long-time evolution of the track irregularities / Modèle stochastique de la dynamique des trains à grande vitesse pour la prévision de l'évolution à long terme des défauts de géométrie de la voie

Lestoille, Nicolas 16 October 2015 (has links)
Les voies ferrées sont de plus en plus sollicitées: le nombre de trains à grande vitesse, leur vitesse et leur charge ne cessent d'augmenter, ce qui contribue à la formation de défauts de géométrie sur la voie. En retour, ces défauts de géométrie influencent la réponse dynamique du train et dégradent les conditions de confort. Pour garantir de bonnes conditions de confort, les entreprises ferroviaires réalisent des opérations de maintenance de la voie, qui sont très coûteuses. Ces entreprises ont donc intérêt à prévoir l'évolution temporelle des défauts de géométrie de la voie pour anticiper les opérations de maintenance, et ainsi réduire les coûts de maintenance et améliorer les conditions de transport. Dans cette thèse, on analyse l'évolution temporelle d'une portion de voie par un indicateur vectoriel sur la dynamique du train. Pour la portion de voie choisie, on construit un modèle stochastique local des défauts de géométrie de la voie à partir d'un modèle global des défauts de géométrie et de big data de défauts mesurés par un train de mesure. Ce modèle stochastique local prend en compte la variabilité des défauts de géométrie de la voie et permet de générer des réalisations des défauts pour chaque temps de mesure. Après avoir validé le modèle numérique de la dynamique du train, les réponses dynamiques du train sur la portion de voie mesurée sont simulées numériquement en utilisant le modèle stochastique local des défauts de géométrie. Un indicateur dynamique, vectoriel et aléatoire, est introduit pour caractériser la réponse dynamique du train sur la portion de voie. Cet indicateur dynamique est construit de manière à prendre en compte les incertitudes de modèle dans le modèle numérique de la dynamique du train. Pour identifier le modèle stochastique des défauts de géométrie et pour caractériser les incertitudes de modèle, des méthodes stochastiques avancées, comme par exemple la décomposition en chaos polynomial ou le maximum de vraisemblance multidimensionnel, sont appliquées à des champs aléatoires non gaussiens et non stationnaires. Enfin, un modèle stochastique de prédiction est proposé pour prédire les quantités statistiques de l'indicateur dynamique, ce qui permet d'anticiper le besoin en maintenance. Ce modèle est construit en utilisant les résultats de la simulation de la dynamique du train et consiste à utiliser un modèle non stationnaire de type filtre de Kalman avec une condition initiale non gaussienne / Railways tracks are subjected to more and more constraints, because the number of high-speed trains using the high-speed lines, the trains speed, and the trains load keep increasing. These solicitations contribute to produce track irregularities. In return, track irregularities influence the train dynamic responses, inducing degradation of the comfort. To guarantee good conditions of comfort in the train, railways companies perform maintenance operations of the track, which are very costly. Consequently, there is a great interest for the railways companies to predict the long-time evolution of the track irregularities for a given track portion, in order to be able to anticipate the start off of the maintenance operations, and therefore to reduce the maintenance costs and to improve the running conditions. In this thesis, the long-time evolution of a given track portion is analyzed through a vector-valued indicator on the train dynamics. For this given track portion, a local stochastic model of the track irregularities is constructed using a global stochastic model of the track irregularities and using big data made up of experimental measurements of the track irregularities performed by a measuring train. This local stochastic model takes into account the variability of the track irregularities and allows for generating realizations of the track irregularities at each long time. After validating the computational model of the train dynamics, the train dynamic responses on the measured track portion are numerically simulated using the local stochastic model of the track irregularities. A vector-valued random dynamic indicator is defined to characterize the train dynamic responses on the given track portion. This dynamic indicator is constructed such that it takes into account the model uncertainties in the train dynamics computational model. For the identification of the track irregularities stochastic model and the characterization of the model uncertainties, advanced stochastic methods such as the polynomial chaos expansion and the multivariate maximum likelihood are applied to non-Gaussian and non-stationary random fields. Finally, a stochastic predictive model is proposed for predicting the statistical quantities of the random dynamic indicator, which allows for anticipating the need for track maintenance. This modeling is constructed using the results of the train dynamics simulation and consists in using a non-stationary Kalman-filter type model with a non-Gaussian initial condition. The proposed model is validated using experimental data for the French railways network for the high-speed trains
6

Stochastic model of high-speed train dynamics for the prediction of long-time evolution of the track irregularities / Modèle stochastique de la dynamique des trains à grande vitesse pour la prévision de l'évolution à long terme des défauts de géométrie de la voie

Lestoille, Nicolas 16 October 2015 (has links)
Les voies ferrées sont de plus en plus sollicitées: le nombre de trains à grande vitesse, leur vitesse et leur charge ne cessent d'augmenter, ce qui contribue à la formation de défauts de géométrie sur la voie. En retour, ces défauts de géométrie influencent la réponse dynamique du train et dégradent les conditions de confort. Pour garantir de bonnes conditions de confort, les entreprises ferroviaires réalisent des opérations de maintenance de la voie, qui sont très coûteuses. Ces entreprises ont donc intérêt à prévoir l'évolution temporelle des défauts de géométrie de la voie pour anticiper les opérations de maintenance, et ainsi réduire les coûts de maintenance et améliorer les conditions de transport. Dans cette thèse, on analyse l'évolution temporelle d'une portion de voie par un indicateur vectoriel sur la dynamique du train. Pour la portion de voie choisie, on construit un modèle stochastique local des défauts de géométrie de la voie à partir d'un modèle global des défauts de géométrie et de big data de défauts mesurés par un train de mesure. Ce modèle stochastique local prend en compte la variabilité des défauts de géométrie de la voie et permet de générer des réalisations des défauts pour chaque temps de mesure. Après avoir validé le modèle numérique de la dynamique du train, les réponses dynamiques du train sur la portion de voie mesurée sont simulées numériquement en utilisant le modèle stochastique local des défauts de géométrie. Un indicateur dynamique, vectoriel et aléatoire, est introduit pour caractériser la réponse dynamique du train sur la portion de voie. Cet indicateur dynamique est construit de manière à prendre en compte les incertitudes de modèle dans le modèle numérique de la dynamique du train. Pour identifier le modèle stochastique des défauts de géométrie et pour caractériser les incertitudes de modèle, des méthodes stochastiques avancées, comme par exemple la décomposition en chaos polynomial ou le maximum de vraisemblance multidimensionnel, sont appliquées à des champs aléatoires non gaussiens et non stationnaires. Enfin, un modèle stochastique de prédiction est proposé pour prédire les quantités statistiques de l'indicateur dynamique, ce qui permet d'anticiper le besoin en maintenance. Ce modèle est construit en utilisant les résultats de la simulation de la dynamique du train et consiste à utiliser un modèle non stationnaire de type filtre de Kalman avec une condition initiale non gaussienne / Railways tracks are subjected to more and more constraints, because the number of high-speed trains using the high-speed lines, the trains speed, and the trains load keep increasing. These solicitations contribute to produce track irregularities. In return, track irregularities influence the train dynamic responses, inducing degradation of the comfort. To guarantee good conditions of comfort in the train, railways companies perform maintenance operations of the track, which are very costly. Consequently, there is a great interest for the railways companies to predict the long-time evolution of the track irregularities for a given track portion, in order to be able to anticipate the start off of the maintenance operations, and therefore to reduce the maintenance costs and to improve the running conditions. In this thesis, the long-time evolution of a given track portion is analyzed through a vector-valued indicator on the train dynamics. For this given track portion, a local stochastic model of the track irregularities is constructed using a global stochastic model of the track irregularities and using big data made up of experimental measurements of the track irregularities performed by a measuring train. This local stochastic model takes into account the variability of the track irregularities and allows for generating realizations of the track irregularities at each long time. After validating the computational model of the train dynamics, the train dynamic responses on the measured track portion are numerically simulated using the local stochastic model of the track irregularities. A vector-valued random dynamic indicator is defined to characterize the train dynamic responses on the given track portion. This dynamic indicator is constructed such that it takes into account the model uncertainties in the train dynamics computational model. For the identification of the track irregularities stochastic model and the characterization of the model uncertainties, advanced stochastic methods such as the polynomial chaos expansion and the multivariate maximum likelihood are applied to non-Gaussian and non-stationary random fields. Finally, a stochastic predictive model is proposed for predicting the statistical quantities of the random dynamic indicator, which allows for anticipating the need for track maintenance. This modeling is constructed using the results of the train dynamics simulation and consists in using a non-stationary Kalman-filter type model with a non-Gaussian initial condition. The proposed model is validated using experimental data for the French railways network for the high-speed trains
7

Statistical inverse problem in nonlinear high-speed train dynamics / Problème statistique inverse en dynamique non-linéaire des trains à grande vitesse

Lebel, David 30 November 2018 (has links)
Ce travail de thèse traite du développement d'une méthode de télédiagnostique de l'état de santé des suspensions des trains à grande vitesse à partir de mesures de la réponse dynamique du train en circulation par des accéléromètres embarqués. Un train en circulation est un système dynamique dont l'excitation provient des irrégularités de la géométrie de la voie ferrée. Ses éléments de suspension jouent un rôle fondamental de sécurité et de confort. La réponse dynamique du train étant dépendante des caractéristiques mécaniques des éléments de suspension, il est possible d'obtenir en inverse des informations sur l'état de ces éléments à partir de mesures accélérométriques embarquées. Connaître l'état de santé réel des suspensions permettrait d'améliorer la maintenance des trains. D’un point de vue mathématique, la méthode de télédiagnostique proposée consiste à résoudre un problème statistique inverse. Elle s'appuie sur un modèle numérique de dynamique ferroviaire et prend en compte l'incertitude de modèle ainsi que les erreurs de mesures. Les paramètres mécaniques associés aux éléments de suspension sont identifiés par calibration Bayésienne à partir de mesures simultanées des entrées (les irrégularités de la géométrie de la voie) et sorties (la réponse dynamique du train) du système. La calibration Bayésienne classique implique le calcul de la fonction de vraisemblance à partir du modèle stochastique de réponse et des données expérimentales. Le modèle numérique étant numériquement coûteux d'une part, ses entrées et sorties étant fonctionnelles d'autre part, une méthode de calibration Bayésienne originale est proposée. Elle utilise un métamodèle par processus Gaussien de la fonction de vraisemblance. Cette thèse présente comment un métamodèle aléatoire peut être utilisé pour estimer la loi de probabilité des paramètres du modèle. La méthode proposée permet la prise en compte du nouveau type d'incertitude induit par l'utilisation d'un métamodèle. Cette prise en compte est nécessaire pour une estimation correcte de la précision de la calibration. La nouvelle méthode de calibration Bayésienne a été testée sur le cas applicatif ferroviaire, et a produit des résultats concluants. La validation a été faite par expériences numériques. Par ailleurs, l'évolution à long terme des paramètres mécaniques de suspensions a été étudiée à partir de mesures réelles de la réponse dynamique du train / The work presented here deals with the development of a health-state monitoring method for high-speed train suspensions using in-service measurements of the train dynamical response by embedded acceleration sensors. A rolling train is a dynamical system excited by the track-geometry irregularities. The suspension elements play a key role for the ride safety and comfort. The train dynamical response being dependent on the suspensions mechanical characteristics, information about the suspensions state can be inferred from acceleration measurements in the train by embedded sensors. This information about the actual suspensions state would allow for providing a more efficient train maintenance. Mathematically, the proposed monitoring solution consists in solving a statistical inverse problem. It is based on a train-dynamics computational model, and takes into account the model uncertainty and the measurement errors. A Bayesian calibration approach is adopted to identify the probability distribution of the mechanical parameters of the suspension elements from joint measurements of the system input (the track-geometry irregularities) and output (the train dynamical response).Classical Bayesian calibration implies the computation of the likelihood function using the stochastic model of the system output and experimental data. To cope with the fact that each run of the computational model is numerically expensive, and because of the functional nature of the system input and output, a novel Bayesian calibration method using a Gaussian-process surrogate model of the likelihood function is proposed. This thesis presents how such a random surrogate model can be used to estimate the probability distribution of the model parameters. The proposed method allows for taking into account the new type of uncertainty induced by the use of a surrogate model, which is necessary to correctly assess the calibration accuracy. The novel Bayesian calibration method has been tested on the railway application and has achieved conclusive results. Numerical experiments were used for validation. The long-term evolution of the suspension mechanical parameters has been studied using actual measurements of the train dynamical response

Page generated in 0.0436 seconds