• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 3
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 11
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Traitement de la parole par analyse-synthèse de Fourier : application à la synthèse par diphones /

Charpentier, Francis, January 1988 (has links)
Th.--Paris--ENST, 1988. / Bibliogr. p. 145-159.
12

A Framework for Unsupervised Learning of Dialogue Strategies

Pietquin, Olivier 01 April 2004 (has links)
This book addresses the problems of spoken dialogue system design and especially automatic learning of optimal strategies for man-machine dialogues. Besides the description of the learning methods, this text proposes a framework for realistic simulation of human-machine dialogues based on probabilistic techniques, which allows automatic evaluation and unsupervised learning of dialogue strategies. This framework relies on stochastic modelling of modules composing spoken dialogue systems as well as on user modelling. Special care has been taken to build models that can either be hand-tuned or learned from generic data.
13

Inversion acoustique-articulatoire avec contraintes

Potard, Blaise Laprie, Yves. January 2008 (has links) (PDF)
Thèse de doctorat : Informatique : Nancy 1 : 2008. / Titre provenant de l'écran-titre.
14

Bedeutungsanalyse in einem sprachverstehenden System unter Berücksichtigung pragmatischer Faktoren /

Ehrlich, Ute. January 1990 (has links)
Diss.--Technische Fakultät--Universität Erlangen-Nürnberg, 1989. Titre de soutenance : Bedeutungsanalyse in einem sprachverstehenden System unter Einbeziehung kontextueller Restriktionen.
15

De l'écrit vers l'oral ou contribution à l'étude des traitements des textes écrits en vue de leur prononciation sur synthétiseur de parole.

Divay, Michel. January 1900 (has links)
Th.--Sci.--Rennes 1, 1984. N°: 397.
16

Apprentissage automatique et compréhension dans le cadre d'un dialogue homme-machine téléphonique à initiative mixte

Servan, Christophe 10 December 2008 (has links) (PDF)
Les systèmes de dialogues oraux Homme-Machine sont des interfaces entre un utilisateur et des services. Ces services sont présents sous plusieurs formes : services bancaires, systèmes de réservations (de billets de train, d'avion), etc. Les systèmes de dialogues intègrent de nombreux modules notamment ceux de reconnaissance de la parole, de compréhension, de gestion du dialogue et de synthèse de la parole. Le module qui concerne la problématique de cette thèse est celui de compréhension de la parole. Le processus de compréhension de la parole est généralement séparé du processus de transcription. Il s'agit, d'abord, de trouver la meilleure hypothèse de reconnaissance puis d'appliquer un processus de compréhension. L'approche proposée dans cette thèse est de conserver l'espace de recherche probabiliste tout au long du processus de compréhension en l'enrichissant à chaque étape. Cette approche a été appliquée lors de la campagne d'évaluation MEDIA. Nous montrons l'intérêt de notre approche par rapport à l'approche classique. En utilisant différentes sorties du module de RAP sous forme de graphe de mots, nous montrons que les performances du décodage conceptuel se dégradent linéairement en fonction du taux d'erreurs sur les mots (WER). Cependant nous montrons qu'une approche intégrée, cherchant conjointement la meilleure séquence de mots et de concepts, donne de meilleurs résultats qu'une approche séquentielle. Dans le souci de valider notre approche, nous menons des expériences sur le corpus MEDIA dans les mêmes conditions d'évaluation que lors de la campagne MEDIA. Il s'agit de produire des interprétations sémantiques à partir des transcriptions sans erreur. Les résultats montrent que les performances atteintes par notre modèle sont au niveau des performances des systèmes ayant participé à la campagne d'évaluation. L'étude détaillée des résultats obtenus lors de la campagne MEDIA nous permet de montrer la corrélation entre, d'une part, le taux d'erreur d'interprétation et, d'autre part, le taux d'erreur mots de la reconnaissance de la parole, la taille du corpus d'apprentissage, ainsi que l'ajout de connaissance a priori aux modèles de compréhension. Une analyse d'erreurs montre l'intérêt de modifier les probabilités des treillis de mots avec des triggers, un modèle cache ou d'utiliser des règles arbitraires obligeant le passage dans une partie du graphe et s'appliquant sur la présence d'éléments déclencheurs (mots ou concepts) en fonction de l'historique. On présente les méthodes à base de d'apprentissage automatique comme nécessairement plus gourmandes en terme de corpus d'apprentissage. En modifiant la taille du corpus d'apprentissage, on peut mesurer le nombre minimal ainsi que le nombre optimal de dialogues nécessaires à l'apprentissage des modèles de langages conceptuels du système de compréhension. Des travaux de recherche menés dans cette thèse visent à déterminer quel est la quantité de corpus nécessaire à l'apprentissage des modèles de langages conceptuels à partir de laquelle les scores d'évaluation sémantiques stagnent. Une corrélation est établie entre la taille de corpus nécessaire pour l'apprentissage et la taille de corpus afin de valider le guide d'annotations. En effet, il semble, dans notre cas de l'évaluation MEDIA, qu'il ait fallu sensiblement le même nombre d'exemple pour, d'une part, valider l'annotation sémantique et, d'autre part, obtenir un modèle stochastique " de qualité " appris sur corpus. De plus, en ajoutant des données a priori à nos modèles stochastiques, nous réduisons de manière significative la taille du corpus d'apprentissage nécessaire pour atteindre les même scores du système entièrement stochastique (près de deux fois moins de corpus à score égal). Cela nous permet de confirmer que l'ajout de règles élémentaires et intuitives (chiffres, nombres, codes postaux, dates) donne des résultats très encourageants. Ce constat a mené à la réalisation d'un système hybride mêlant des modèles à base de corpus et des modèles à base de connaissance. Dans un second temps, nous nous appliquons à adapter notre système de compréhension à une application de dialogue simple : un système de routage d'appel. La problématique de cette tâche est le manque de données d'apprentissage spécifiques au domaine. Nous la résolvons en partie en utilisant divers corpus déjà à notre disposition. Lors de ce processus, nous conservons les données génériques acquises lors de la campagne MEDIA et nous y intégrons les données spécifiques au domaine. Nous montrons l'intérêt d'intégrer une tâche de classification d'appel dans un processus de compréhension de la parole spontanée. Malheureusement, nous disposons de très peu de données d'apprentissage relatives au domaine de la tâche. En utilisant notre approche intégrée de décodage conceptuel, conjointement à un processus de filtrage, nous proposons une approche sous forme de sac de mots et de concepts. Cette approche exploitée par un classifieur permet d'obtenir des taux de classification d'appels encourageants sur le corpus de test, alors que le WER est assez élevé. L'application des méthodes développées lors de la campagne MEDIA nous permet d'améliorer la robustesse du processus de routage d'appels.
17

Contribution à l'identification automatique des langues romanes

Vasilescu, Ioana Gabriela. Hombert, Jean-Marie January 2001 (has links)
Thèse de doctorat : Sciences du langage : Lyon 2 : 2001. / Titre provenant de l'écran-titre. Bibliogr.
18

Évaluation expérimentale d'un système statistique de synthèse de la parole, HTS, pour la langue française

Le Maguer, Sébastien 05 July 2013 (has links) (PDF)
Les travaux présentés dans cette thèse se situent dans le cadre de la synthèse de la parole à partir du texte et, plus précisément, dans le cadre de la synthèse paramétrique utilisant des règles statistiques. Nous nous intéressons à l'influence des descripteurs linguistiques utilisés pour caractériser un signal de parole sur la modélisation effectuée dans le système de synthèse statistique HTS. Pour cela, deux méthodologies d'évaluation objective sont présentées. La première repose sur une modélisation de l'espace acoustique, généré par HTS par des mélanges gaussiens (GMM). En utilisant ensuite un ensemble de signaux de parole de référence, il est possible de comparer les GMM entre eux et ainsi les espaces acoustiques générés par les différentes configurations de HTS. La seconde méthodologie proposée repose sur le calcul de distances entre trames acoustiques appariées pour pouvoir évaluer la modélisation effectuée par HTS de manière plus locale. Cette seconde méthodologie permet de compléter les diverses analyses en contrôlant notamment les ensembles de données générées et évaluées. Les résultats obtenus selon ces deux méthodologies, et confirmés par des évaluations subjectives, indiquent que l'utilisation d'un ensemble complexe de descripteurs linguistiques n'aboutit pas nécessairement à une meilleure modélisation et peut s'avérer contre-productif sur la qualité du signal de synthèse produit.
19

Analysis of the Dirichlet process mixture model with application to dialogue act classification

Bakhtiari, Alireza 17 April 2018 (has links)
La reconnaissance des intentions de l’utilisateur est l’un des problèmes les plus difficiles dans la conception des systèmes de dialogues. Ces intentions sont généralement codés en termes d’actes de dialogue, où un rôle fonctionnel est attribué à chaque énoncé d’une conversation. L’annotation manuelle des actes de dialogue est généralement coûteuse et prends du temps, il y a donc un grand intérêt à plutôt annoter automatiquement des corpus de dialogue. Dans ce mémoire, nous proposons une approche non paramétrique bayésienne pour la classification automatique des actes de dialogue. Nous utilisons les mélanges par processus de Dirichlet (DPMM), dans lesquels chacune des composantes est déterminée par une distribution de Dirichlet-multinomial. Deux nouvelles approches pour l’estimation des hyperparamètres dans ces distributions sont introduites. Les résultats de l’application de ce modèle au corpus DIHANA montre que la DPMM peut récupérer le nombre réel d’étiquettes en haute précision. / Recognition of user intentions is one of the most challenging problems in the design of dialogue systems. These intentions are usually coded in terms of Dialogue Acts (Following Austin’s work on speech act theory), where a functional role is assigned to each utterance of a conversation. Manual annotation of dialogue acts is both time consuming and expensive, therefore there is a huge interest in systems which are able to automatically annotate dialogue corpora. In this thesis, we propose a nonparametric Bayesian approach for the automatic classification of dialogue acts. We make use of the Dirichlet Process Mixture Model (DPMM), within which each of the components is governed by a Dirichlet-Multinomial distribution. Two novel approaches for hyperparameter estimation in these distributions are also introduced. Results of the application of this model to the DIHANA corpus shows that the DPMM can successfully recover the true number of DA labels with high precision
20

Évaluation expérimentale d'un système statistique de synthèse de la parole, HTS, pour la langue française / Experimental evaluation of a statistical speech synthesis system, HTS, for french

Le Maguer, Sébastien 05 July 2013 (has links)
Les travaux présentés dans cette thèse se situent dans le cadre de la synthèse de la parole à partir du texte et, plus précisément, dans le cadre de la synthèse paramétrique utilisant des règles statistiques. Nous nous intéressons à l'influence des descripteurs linguistiques utilisés pour caractériser un signal de parole sur la modélisation effectuée dans le système de synthèse statistique HTS. Pour cela, deux méthodologies d'évaluation objective sont présentées. La première repose sur une modélisation de l'espace acoustique, généré par HTS par des mélanges gaussiens (GMM). En utilisant ensuite un ensemble de signaux de parole de référence, il est possible de comparer les GMM entre eux et ainsi les espaces acoustiques générés par les différentes configurations de HTS. La seconde méthodologie proposée repose sur le calcul de distances entre trames acoustiques appariées pour pouvoir évaluer la modélisation effectuée par HTS de manière plus locale. Cette seconde méthodologie permet de compléter les diverses analyses en contrôlant notamment les ensembles de données générées et évaluées. Les résultats obtenus selon ces deux méthodologies, et confirmés par des évaluations subjectives, indiquent que l'utilisation d'un ensemble complexe de descripteurs linguistiques n'aboutit pas nécessairement à une meilleure modélisation et peut s'avérer contre-productif sur la qualité du signal de synthèse produit. / The work presented in this thesis is about TTS speech synthesis and, more particularly, about statistical speech synthesis for French. We present an analysis on the impact of the linguistic contextual factors on the synthesis achieved by the HTS statistical speech synthesis system. To conduct the experiments, two objective evaluation protocols are proposed. The first one uses Gaussian mixture models (GMM) to represent the acoustical space produced by HTS according to a contextual feature set. By using a constant reference set of natural speech stimuli, GMM can be compared between themselves and consequently acoustic spaces generated by HTS. The second objective evaluation that we propose is based on pairwise distances between natural speech and synthetic speech generated by HTS. Results obtained by both protocols, and confirmed by subjective evaluations, show that using a large set of contextual factors does not necessarily improve the modeling and could be counter-productive on the speech quality.

Page generated in 0.1424 seconds