• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scalable algorithms for monitoring activity traces / Algorithmes pour le monitoring de traces d'activité à grande échelle

Pilourdault, Julien 28 September 2017 (has links)
Dans cette thèse, nous étudions des algorithmes pour le monitoring des traces d’activité à grande échelle. Le monitoring est une aptitude clé dans plusieurs domaines, permettant d’extraire de la valeur des données ou d’améliorer les performances d’un système. Nous explorons d’abord le monitoring de données temporelles. Nous présentons un nouveau type de jointure sur des intervalles, qui inclut des fonctions de score caractérisant le degré de satisfaction de prédicats temporels. Nous étudions ces jointures dans le contexte du batch processing (traitement par lots). Nous formalisons la Ranked Temporal Join (RTJ), une jointure qui combine des collections d’intervalles et retourne les k meilleurs résultats. Nous montrons comment exploiter les propriétés des prédicats temporels et de la sémantique de score associée afin de concevoir TKIJ , une méthode d’évaluation de requête distribuée basée sur Map-Reduce. Nos expériences sur des données synthétiques et réelles montrent que TKIJ est plus performant que les techniques de l’état de l’art et démontre de bonnes performances sur des requêtes RTJ n-aires sur des données temporelles. Nous proposons également une étude préliminaire afin d’étendre nos travaux sur TKIJ au domaine du stream processing (traitement de flots). Nous explorons ensuite le monitoring dans le crowdsourcing (production participative). Nous soutenons la nécessité d’intégrer la motivation des travailleurs dans le processus d’affectation des tâches. Nous proposons d’étudier une approche adaptative, qui évalue la motivation des travailleurs lors de l’exécution des tâches et l’exploite afin d’améliorer l’affectation de tâches qui est réalisée de manière itérative. Nous explorons une première variante nommée Individual Task Assignment (Ita), dans laquelle les tâches sont affectées individuellement, un travailleur à la fois. Nous modélisons Ita et montrons que ce problème est NP-Difficile. Nous proposons trois méthodes d’affectation de tâches qui poursuivent différents objectifs. Nos expériences en ligne étudient l’impact de chaque méthode sur la performance globale dans l’exécution de tâches. Nous observons que différentes stratégies sont dominantes sur les différentes dimensions de performance. En particulier, la méthode affectant des tâches aléatoires et correspondant aux intérêts d’un travailleur donne le meilleur flux d’exécution de tâches. La méthode affectant des tâches correspondant au compromis d’un travailleur entre diversité et niveau de rémunération des tâches donne le meilleur niveau de qualité. Nos expériences confirment l’utilité d’une affectation de tâches adaptative et tenant compte de la motivation. Nous étudions une deuxième variante nommée Holistic Task Assignment (Hta), où les tâches sont affectées à tous les travailleurs disponibles, de manière holistique. Nous modélisons Hta et montrons que ce problème est NP-Difficile et MaxSNP-Difficile. Nous développons des algorithmes d’approximation pour Hta. Nous menons des expériences sur des données synthétiques pour évaluer l’efficacité de nos algorithmes. Nous conduisons également des expériences en ligne et comparons notre approche avec d’autres stratégies non adaptatives. Nous observons que notre approche présente le meilleur compromis sur les différentes dimensions de performance. / In this thesis, we study scalable algorithms for monitoring activity traces. In several domains, monitoring is a key ability to extract value from data and improve a system. This thesis aims to design algorithms for monitoring two kinds of activity traces. First, we investigate temporal data monitoring. We introduce a new kind of interval join, that features scoring functions reflecting the degree of satisfaction of temporal predicates. We study these joins in the context of batch processing: we formalize Ranked Temporal Join (RTJ), that combine collections of intervals and return the k best results. We show how to exploit the nature of temporal predicates and the properties of their associated scored semantics to design TKIJ , an efficient query evaluation approach on a distributed Map-Reduce architecture. Our extensive experiments on synthetic and real datasets show that TKIJ outperforms state-of-the-art competitors and provides very good performance for n-ary RTJ queries on temporal data. We also propose a preliminary study to extend our work on TKIJ to stream processing. Second, we investigate monitoring in crowdsourcing. We advocate the need to incorporate motivation in task assignment. We propose to study an adaptive approach, that captures workers’ motivation during task completion and use it to revise task assignment accordingly across iterations. We study two variants of motivation-aware task assignment: Individual Task Assignment (Ita) and Holistic Task Assignment (Hta). First, we investigate Ita, where we assign tasks to workers individually, one worker at a time. We model Ita and show it is NP-Hard. We design three task assignment strategies that exploit various objectives. Our live experiments study the impact of each strategy on overall performance. We find that different strategies prevail for different performance dimensions. In particular, the strategy that assigns random and relevant tasks offers the best task throughput and the strategy that assigns tasks that best match a worker’s compromise between task diversity and task payment has the best outcome quality. Our experiments confirm the need for adaptive motivation-aware task assignment. Then, we study Hta, where we assign tasks to all available workers, holistically. We model Hta and show it is both NP-Hard and MaxSNP-Hard. We develop efficient approximation algorithms with provable guarantees. We conduct offline experiments to verify the efficiency of our algorithms. We also conduct online experiments with real workers and compare our approach with various non-adaptive assignment strategies. We find that our approach offers the best compromise between performance dimensions thereby assessing the need for adaptability.
2

Distributed query processing over fluctuating streams / Traitement distribué de requêtes sur des flux variants

Kotto Kombi, Roland 29 June 2018 (has links)
Le traitement de flux de données est au cœur des problématiques actuelles liées au Big Data. Face à de grandes quantités de données (Volume) accessibles de manière éphémère (Vélocité), des solutions spécifiques tels que les systèmes de gestion de flux de données (SGFD) ont été développés. Ces SGFD reçoivent des flux et des requêtes continues pour générer de nouveaux résultats aussi longtemps que des données arrivent en entrée. Dans le contexte de cette thèse, qui s’est réalisée dans le cadre du projet ANR Socioplug (ANR-13-INFR-0003), nous considérons une plateforme collaborative de traitement de flux de données à débit variant en termes de volume et de distribution des valeurs. Chaque utilisateur peut soumettre des requêtes continues et contribue aux ressources de traitement de la plateforme. Cependant, chaque unité de traitement traitant les requêtes dispose de ressources limitées ce qui peut engendrer la congestion du système en fonction des variations des flux en entrée. Le problème est alors de savoir comment adapter dynamiquement les ressources utilisées par chaque requête continue par rapport aux besoins de traitement. Cela soulève plusieurs défis : i) comment détecter un besoin de reconfiguration ? ii) quand reconfigurer le système pour éviter sa congestion ? Durant ces travaux de thèse, nous nous sommes intéressés à la gestion automatique de la parallélisation des opérateurs composant une requête continue. Nous proposons une approche originale basée sur une estimation des besoins de traitement dans un futur proche. Ainsi, nous pouvons adapter le niveau de parallélisme des opérateurs de manière proactive afin d’ajuster les ressources utilisées aux besoins des traitements. Nous montrons qu’il est possible d’éviter la congestion du système mais également de réduire significativement la consommation de ressources à performance équivalente. Ces différents travaux ont été implémentés et validés dans un SGFD largement utilisé avec différents jeux de tests reproductibles. / In a Big Data context, stream processing has become a very active research domain. In order to manage ephemeral data (Velocity) arriving at important rates (Volume), some specific solutions, denoted data stream management systems (DSMSs),have been developed. DSMSs take as inputs some queries, called continuous queries,defined on a set of data streams. Acontinuous query generates new results as long as new data arrive in input. In many application domains, data streams haveinput rates and distribution of values which change over time. These variations may impact significantly processingrequirements for each continuous query.This thesis takes place in the ANR project Socioplug (ANR-13-INFR-0003). In this context, we consider a collaborative platformfor stream processing. Each user can submit multiple continuous queries and contributes to the execution support of theplatform. However, as each processing unit supporting treatments has limited resources in terms of CPU and memory, asignificant increase in input rate may cause the congestion of the system. The problem is then how to adjust dynamicallyresource usage to processing requirements for each continuous query ? It raises several challenges : i) how to detect a need ofreconfiguration ? ii) when reconfiguring the system to avoid its congestion at runtime ?In this work, we are interested by the different processing steps involved in the treatment of a continuous query over adistributed infrastructure. From this global analysis, we extract mechanisms enabling dynamic adaptation of resource usage foreach continuous query. We focus on automatic parallelization, or auto-parallelization, of operators composing the executionplan of a continuous query. We suggest an original approach based on the monitoring of operators and an estimation ofprocessing requirements in near future. Thus, we can increase (scale-out), or decrease (scale-in) the parallelism degree ofoperators in a proactive many such as resource usage fits to processing requirements dynamically. Compared to a staticconfiguration defined by an expert, we show that it is possible to avoid the congestion of the system in many cases or to delay itin most critical cases. Moreover, we show that resource usage can be reduced significantly while delivering equivalentthroughput and result quality. We suggest also to combine this approach with complementary mechanisms for dynamic adaptation of continuous queries at runtime. These differents approaches have been implemented within a widely used DSMS and have been tested over multiple and reproductible micro-benchmarks.
3

Implantation des futures sur un système distribué par passage de messages

Lasalle-Ratelle, Jérémie 08 1900 (has links)
Ce mémoire présente une implantation de la création paresseuse de tâches desti- née à des systèmes multiprocesseurs à mémoire distribuée. Elle offre un sous-ensemble des fonctionnalités du Message-Passing Interface et permet de paralléliser certains problèmes qui se partitionnent difficilement de manière statique grâce à un système de partitionnement dynamique et de balancement de charge. Pour ce faire, il se base sur le langage Multilisp, un dialecte de Scheme orienté vers le traitement parallèle, et implante sur ce dernier une interface semblable à MPI permettant le calcul distribué multipro- cessus. Ce système offre un langage beaucoup plus riche et expressif que le C et réduit considérablement le travail nécessaire au programmeur pour pouvoir développer des programmes équivalents à ceux en MPI. Enfin, le partitionnement dynamique permet de concevoir des programmes qui seraient très complexes à réaliser sur MPI. Des tests ont été effectués sur un système local à 16 processeurs et une grappe à 16 processeurs et il offre de bonnes accélérations en comparaison à des programmes séquentiels équiva- lents ainsi que des performances acceptables par rapport à MPI. Ce mémoire démontre que l’usage des futures comme technique de partitionnement dynamique est faisable sur des multiprocesseurs à mémoire distribuée. / This master’s thesis presents an implementation of lazy task creation for distributed memory multiprocessors. It offers a subset of Message-Passing Interface’s functionality and allows parallelization of some problems that are hard to statically partition thanks to its dynamic partitionning and load balancing system. It is based on Multilisp, a Scheme dialect for parallel computing, and implements an MPI like interface on top of it. It offers a richer and more expressive language than C and simplify the work needed to developp programs similar to those in MPI. Finally, dynamic partitioning allows some programs that would be very hard to develop in MPI. Tests were made on a 16 cpus computer and on a 16 cpus cluster. The system gets good accelerations when compared to equivalent sequential programs and acceptable performances when compared to MPI. It shows that it is possible to use futures as a dynamic partitioning method on distributed memory multiprocessors.
4

Implantation des futures sur un système distribué par passage de messages

Lasalle-Ratelle, Jérémie 08 1900 (has links)
Ce mémoire présente une implantation de la création paresseuse de tâches desti- née à des systèmes multiprocesseurs à mémoire distribuée. Elle offre un sous-ensemble des fonctionnalités du Message-Passing Interface et permet de paralléliser certains problèmes qui se partitionnent difficilement de manière statique grâce à un système de partitionnement dynamique et de balancement de charge. Pour ce faire, il se base sur le langage Multilisp, un dialecte de Scheme orienté vers le traitement parallèle, et implante sur ce dernier une interface semblable à MPI permettant le calcul distribué multipro- cessus. Ce système offre un langage beaucoup plus riche et expressif que le C et réduit considérablement le travail nécessaire au programmeur pour pouvoir développer des programmes équivalents à ceux en MPI. Enfin, le partitionnement dynamique permet de concevoir des programmes qui seraient très complexes à réaliser sur MPI. Des tests ont été effectués sur un système local à 16 processeurs et une grappe à 16 processeurs et il offre de bonnes accélérations en comparaison à des programmes séquentiels équiva- lents ainsi que des performances acceptables par rapport à MPI. Ce mémoire démontre que l’usage des futures comme technique de partitionnement dynamique est faisable sur des multiprocesseurs à mémoire distribuée. / This master’s thesis presents an implementation of lazy task creation for distributed memory multiprocessors. It offers a subset of Message-Passing Interface’s functionality and allows parallelization of some problems that are hard to statically partition thanks to its dynamic partitionning and load balancing system. It is based on Multilisp, a Scheme dialect for parallel computing, and implements an MPI like interface on top of it. It offers a richer and more expressive language than C and simplify the work needed to developp programs similar to those in MPI. Finally, dynamic partitioning allows some programs that would be very hard to develop in MPI. Tests were made on a 16 cpus computer and on a 16 cpus cluster. The system gets good accelerations when compared to equivalent sequential programs and acceptable performances when compared to MPI. It shows that it is possible to use futures as a dynamic partitioning method on distributed memory multiprocessors.

Page generated in 0.0985 seconds