• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Short Text Clustering for Transactional Data

Annerwall, Staffan January 2021 (has links)
The digital revolution has led to an increase in digitization of transactional information. Due to the large amount of data, the transactions must be categorized such that an overview of spending can be obtained. To aid the process of manually classifying transactions, we consider a process of clustering short text transactional data as a pre-processing step. If clusters have high homogeneity, then entire clusters, and hence multiple transactions, can be classified at once. We explore two short text clustering methods, and evaluate them on real-world data in terms of execution time and clustering performance determined by domain experts. In the evaluations results, the clusterings exhibit poor intra-cluster similarity (i.e. homogeneity), and are deemed unusable. One of the algorithms is extremely slow, but this is likely due to insufficient memory capacity of the evaluation environment. We conclude that the chosen methods are unsuitable for our purposes and discuss the properties that other clustering techniques should have in order to be suitable. We also discuss non-clustering approaches that may be suitable.
2

Artificial Transactional Data Generation for Benchmarking Algorithms / Generering av artificiell transaktionsdata för att prestandamäta algoritmer

Lundgren, Veronica January 2023 (has links)
Modern retailers have been collecting more and more data over the past decades. The increased sizes of collected data have led to higher demand for data analytics expertise tools, which the Umeå-founded company Infobaleen provides. A recurring challenge when developing such tools is the data itself. Difficulties in finding relevant open data sets have led to a rise in the popularity of using synthetic data. By using artificially generated data, developers gain more control over the input when testing and presenting their work. However, most methods that exist today either depend on real-world data as input or produce results that look synthetic and are difficult to extend. In this thesis, I introduce a method specifically designed to generate synthetic transactional data stochastically. I first examined real-world data provided by Infobaleen to determine suitable statistical distributions to use in my algorithm empirically. I then modelled individual decision-making using points in an embedding space, where the distance between the points serves as a basis for individually unique probability weights. This solution creates data distributed similarly to real-world data and enables retroactive data enrichment using the same embeddings. The result is a data set that looks genuine to the human eye but is entirely synthetic. Infobaleen already generates data with this model when presenting its product to new potential customers or partners.
3

Towards data-driven decision-making in product portfolio management:from company-level to product-level analysis

Hannila, H. (Hannu) 23 November 2019 (has links)
Abstract Products and services are critical for companies as they create the foundation for companies’ financial success. Twenty per cent of company products typically account for some eighty per cent of sales volume. Nevertheless, the product portfolio decisions — how to strategically renew company product offering — tend to involve emotions, pet products and who-shout-the-loudest mentality while facts, numbers, and quantitative analyses are missing. Profitability is currently measured and reported at a company level, and firms seem unable to measure product-level profitability in a constant way. Consequently, companies are unable to maintain and renew their product portfolio in a strategically or commercially balanced way. The main objective of this study is to provide a data-driven product portfolio management (PPM) concept, which recognises and visualises in real-time and based on facts which company products are concurrently strategic and profitable, and what is the share of them in the product portfolio. This dissertation is a qualitative study to understand the topical area by the means combining literature review, company interviews, observations, and company internal material, to take steps towards data-driven decision-making in PPM. This study indicates that company data assets need to be combined and governed company-widely to realise the full potential of company strategic assets — the DATA. Data must be governed separately from business IT technology and beyond it. Beyond data and technology, the data-driven company culture must be adopted first. The data-driven PPM concept connects key business processes, business IT systems and several concepts, such as productization, product lifecycle management and PPM. The managerial implications include, that the shared understanding of the company products is needed, and the commercial and technical product structures are created accordingly, as they form the backbone of the company business as the skeleton to gather all product-related business-critical information for product-level profitability analysis. Also, product classification for strategic, supportive and non-strategic is needed, since the strategic nature of the product can change during the entire product lifecycle, e.g. due to the technology obsolescence, disruptive innovations by competitors, or for any other reason. / Tiivistelmä Tuotteet ja palvelut ovat yrityksille kriittisiä, sillä ne luovat perustan yritysten taloudelliselle menestykselle. Kaksikymmentä prosenttia yrityksen tuotteista edustaa tyypillisesti noin kahdeksaakymmentä prosenttia myyntimääristä. Siitä huolimatta tuoteporfoliopäätöksiin — kuinka strategisesti uudistetaan yrityksen tuotetarjoomaa — liittyy tunteita, lemmikkituotteita ja kuka-huutaa-kovimmin -mentaliteettia faktojen, numeroiden ja kvantitatiivisten analyysien puuttuessa. Kannattavuutta mitataan ja raportoidaan tällä hetkellä yritystasolla, ja yritykset eivät näyttäisi pystyvän mittaamaan tuotetason kannattavuutta johdonmukaisesti. Tämä estää yrityksiä ylläpitämästä ja uudistamasta tuotevalikoimaansa strategisesti tai kaupallisesti tasapainoisella tavalla. Tämän tutkimuksen päätavoite on tarjota dataohjattu (data-driven) tuoteportfoliohallinnan konsepti, joka tunnistaa ja visualisoi reaaliajassa ja faktapohjaisesti, mitkä yrityksen tuotteet ovat samanaikaisesti strategisia ja kannattavia ja mikä on niiden osuus tuoteportfoliossa. Tämä väitöskirja on laadullinen tutkimus, jossa yhdistyy kirjallisuuskatsaus, yrityshaastattelut, havainnot ja yritysten sisäinen dokumentaatio, joiden pohjalta pyritään kohti dataohjautuvaa päätöksentekoa tuoteportfolion hallinnassa. Tämä tutkimus osoittaa, että yrityksen data assettit on yhdistettävä ja hallittava yrityksenlaajuisesti, jotta yrityksen strategisten assettien — DATAN — potentiaali voidaan hyödyntää kokonaisuudessaan. Data on hallittava erillään yrityksen IT-teknologiasta ja sen yläpuolella. Ennen dataa ja teknologiaa on omaksuttava dataohjattu yrityskulttuuri. Dataohjatun tuoteportfolionhallinnan konsepti yhdistää keskeiset liiketoimintaprosessit, liiketoiminnan IT-järjestelmät ja useita konsepteja, kuten tuotteistaminen, tuotteen elinkaaren hallinta ja tuoteportfolion hallinta. Yhteisymmärrys yrityksen tuotteista ja sekä kaupallisen että teknisen tuoterakenteet luominen vastaavasti on ennakkoedellytys dataohjatulle tuoteportfolion hallinnalle, koska ne muodostavat yrityksen liiketoiminnan selkärangan, joka yhdistää kaikki tuotteisiin liittyvät liiketoimintakriittiset tiedot tuotetason kannattavuuden analysoimiseksi. Lisäksi tarvitaan tuotteiden kategorisointi strategisiin, tukeviin ja ei-strategisiin tuotteisiin, koska tuotteen strateginen luonne voi muuttua tuotteen elinkaaren aikana, johtuen esimerkiksi teknologian vanhenemisesta, kilpailijoiden häiritsevistä innovaatioista tai mistä tahansa muusta syystä.

Page generated in 0.1074 seconds