• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineered DNA-Binding Proteins for Targeted Genome Editing and Gene Regulation

Maeder, Morgan Lee 07 June 2014 (has links)
Engineered DNA-binding proteins enable targeted manipulation of the genome. Zinc fingers are the most well characterized DNA-binding domain and for many years research has focused on understanding and manipulating the sequence-specificities of these proteins. Recently, major advances in the ability to engineer zinc finger proteins, as well as the discovery of a new class of DNA-binding domains - transcription activator-like effectors (TALEs), have made it possible to rapidly and reliably engineer proteins targeted to any sequence of interest. With this capability, focus has shifted to exploring the applications of this powerful technology. In this dissertation I explore three important applications of engineered DNA-binding proteins.
2

Functional analysis of bacterial TAL effectors and the targeted susceptibility genes in plants

Zhang, Junli January 1900 (has links)
Doctor of Philosophy / Department of Plant Pathology / Frank White / The genus Xanthomonas consists of bacterial species causing economically important plant diseases in major crops. In a wide variety of Xanthamonas species, the transcription activator-like (TAL) effectors (proteins) are synthesized and secreted into host cells, whereby they enter the plant nucleus. TAL effectors bind specific host gene promoters, inducing the expression of the targeted genes, which in some cases leads to either resistance or an enhanced state of disease susceptibility. The TAL effectors in individual Xanthomanas species and their targets in host plants have been characterized in relatively few cases. The premier example is the induction of any one member of a clade of sugar transporter genes in rice by TAL effectors of the bacterial blight pathogen X. oryzae pv. oryzae, where induction of the susceptibility (S) genes was shown to be required for the disease process. TAL effector genes are present in a wide variety of Xanthomonas species other than X. oryzae pv. oryzae. My dissertation focuses on the characterization of the TAL effectors in the citrus bacterial canker (CBC) and soybean bacterial pustule pathosystems. In CBC, CsLOB1 was identified as the S gene targeted by multiple major TAL effectors from CBC causal strains. Furthermore, another two members in family of citrus LBD family, although not identified as targets in the field, can serve as S genes in CBC. Initial analysis of bacterial pustule disease of soybean indicates that the TAL effector TAL2 of X. axonopodis pv. glycines is a virulence effector and associated with the expression of two candidate S genes, which encode a member of the ZF-HD transcription factors and a member of aluminum activated malate transporter family. These studies will enhance our understanding of plant-bacterial interactions and evolution of disease susceptibility, and also inform development of durable disease resistant crop varieties.

Page generated in 0.1386 seconds