• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contrôle de la différenciation sexuelle de la levure Schizosaccharomyces pombe par un ARN non-codant et la protéine de liaison à l’ARN Mmi1 / Control of sexual differentiation in the yeast Schizosaccharomyces pombe by a non-coding RNA and the RNA binding protein Mmi1

Dangin, Mathieu 27 November 2017 (has links)
Au cours des cinq dernières années l’existence d’un contrôle de la transcription par les ARN non-codants longs (lncRNAs) a été décrite dans une large variété d’eucaryotes. Cependant, les mécanismes par lesquels les lncRNAs régulent la transcription restent en grande partie méconnus. Les premiers travaux effectués dans le cadre de cette thèse ont participé à la caractérisation du mécanisme mis en jeu par un lncRNA, nommé nam1, dans le contrôle de l’entrée en différenciation sexuelle chez la levure Schizosaccharomyces pombe. Il a ainsi été montré qu’au cours de sa synthèse le lncRNA nam1 est ciblé par la protéine de liaison à l’ARN Mmi1 et une machinerie de surveillance des ARN qui comprend l’exosome, un complexe de dégradation des ARN conservé au cours de l’évolution. La fixation de Mmi1 au lncRNA nam1 contrôle la terminaison de la transcription de nam1 et empêche ainsi la transcription de se poursuivre et d’interférer alors avec la transcription du gène situé en aval (codant pour une MAP kinase essentielle à l’entrée en différenciation). Les travaux suivant montrent l’implication dans ce mécanisme de la protéine Cti1, un des co-facteurs connus de l’exosome. Fait marquant, ces travaux rapportent aussi l’existence d’un mode de production inédit pour un lncRNA. En effet, ils révèlent que la transcription non-interrompue d’un gène codant conduirait à la production d’un ARN bi-cistronique. La maturation co-transcriptionnelle de cet ARN bi-cistronique produirait, d’un côté, un ARN messager et, de l’autre, le lncRNA nam1. Enfin, ils ont permit la caractérisation initiale d’un nouveau composant de la machinerie de surveillance des ARN recrutée sur nam1 par Mmi1. Ainsi, dans leur ensemble, ces travaux contribuent à une meilleure connaissance des mécanismes pouvant être mis en jeu par un lncRNA et agissant en cis pour réguler l’expression génique et, à travers elle, des processus cellulaires majeurs, tel que la différenciation cellulaire. De plus, ils décrivent un nouveau mécanisme de biogénèse d’un lncRNA. / Over the last five years, the control of transcription mediated by long non-coding RNAs (lncRNAs) has been reported to take place in a wide variety of eukaryotes. However, the mechanisms by which lncRNAs regulate transcription remain relatively poorly described. The first work conducted in the context of this PhD thesis has contributed to the characterization of the mechanism used by a lncRNA, named nam1, to control entry into sexual differentiation of the fission yeast Schizosaccharomyces pombe. It was shown that, while the lncRNA nam1 is being produced, it is targeted by the RNA binding protein Mmi1 and a RNA surveillance machinery that includes the exosome, a conserved complex throughout evolution. The binding of Mmi1 to nam1 lncRNA controls the termination of transcription of nam1, which prevents this non-coding transcription from interfering with the transcription of the downstream gene, coding for a MAP kinase essential to entry into differentiation. The following work shows the importance of the protein Cti1, one of the known co-factor of the exosome, in the nam1-dependent control of sexual differentiation. Remarkably, it also strongly suggests the existence of a new way of producing a lncRNA. Indeed, it reveals that read-through transcription of a protein-coding gene leads to the production of a bi-cistronic RNA, which is co-transcriptionally matured to produce on one side a messenger RNA and on the other side the lncRNA nam1. Finally, this work initiated the characterization of a new component of the RNA surveillance machinery targeting nam1. Collectively, this work brings several insights into the mechanisms used by cis-acting lncRNAs to regulate gene expression and, thereby, major cellular processes such as cell differentiation. Moreover, it also provides insights into the biogenesis of lncRNAs by reporting a new mode of production of lncRNAs.
12

Les AtNSRs, protéines régulatrices de l’épissage alternatif et du silencing post transcriptionnel / The AtNSRs, proteins involved in alternative splicing regulation and post transcriptionnal gene silencing

Bardou, Florian 05 May 2013 (has links)
Chez les eucaryotes, plusieurs protéines liant l'ARN ou RBPs agissent sur l'ARNm à différents niveaux, de l'épissage à la traduction. Récemment, un grand nombre d’ARN non-codant des protéines (npcRNAs) ont été identifiés chez les eucaryotes et ont été montré comme interagissant avec une variété de ribonucléoprotéines (RNP) pour contrôler l'expression des gènes au niveau post-transcriptionnel. Nous avons identifié une Nuclear-Speckle RBP (ou NSR) qui interagit avec le npcRNA, ENOD40, un lncARN qui s'accumule au cours de la formation des racines latérales et des nodules chez les légumineuses. Durant cette thèse nous avons analysé le rôle des NSR d’Arabidopsis thaliana ainsi que leur lien avec les npcARN.Deux gènes AtNSRs homologues existent chez Arabidopsis nommés NSRa et NSRb, ces gènes codent des protéines localisées dans des speckles nucléaires avec certaines protéines apparentées à l’épissage. Fait intéressant, les fusions AtNSR-GFP sont relocalisées dans des granules cytoplasmiques dans certaines cellules des racines différenciées ainsi que lors d’une co-expression éctopique de ENOD40. Le gène AtNSRb est régulé par l'auxine alors AtNSRa est constitutif. Les simples mutants Atnsr ne montrent pas de phénotype, mais la croissance des racines des doubles mutants est partiellement insensible à l'auxine, ce qui suggère une fonction redondante de ces protéines dans les racines. La localisation observée pour ces protéines nous a mené à explorer un rôle des NSRs dans l’épissage, nous avons donc analysé le profil d'épissage de 288 gènes en réponse à l'auxine chez Arabidopsis et comparé ces profils entre le WT et les mutants nsra/nsrb. Tout d’abord nous avons remarqué que l’épissage général ne variait pas, en revanche, l’analyse de 288 gènes alternativement épissés montre que le profil d'épissage de 77 gènes semble être modifié durant la réponse à l'auxine et 51 gènes nécessitent les protéines AtNSR pour ce changement. Afin de vérifier l’interaction des NSRs avec les cibles d’AS et avec les npcARN nous avons co-immunoprécipité les NSRs et nous avons identifié au moins 5 cible d’AS et 2 npcARN. L’expression de l’ARN ENOD40 ainsi que du partenaire npcARN module L’AS chez Arabidopsis. Dans un deuxième chapitre, nous avons exploré le rôle des NSRs dans le PTGS déclenché par un transgène contenant un intron ce qui nous a permis de lier l’épissage alternatif et le silencing. Nous proposons donc que les NSRs pourraient lier l’épissage alternatif et l’action des ARN non codants, notamment lors de la croissance de la racine. / In eukaryotes, several RNA binding proteins (RBPs) act on mRNA at various levels from splicing to translation. Recently a large number of non-protein coding RNAs (npcRNAs) have been identified in eukaryotes and shown to integrate into a variety of ribonucleoproteins (RNP) to control posttranscriptional gene expression. Our laboratory has identified a plant Nuclear-Speckle RBP (or NSR) that interacts with an npcRNA, ENOD40 that accumulates during lateral root and nodule formation in legumes. NSR is relocalised into a cytoplasmic RNP in the ENOD40-expressing cells. During this PhD, we have analysed the role of NSRs in Arabidopsis thaliana and its link with npcRNAs. Two AtNSR homologs from Arabidopsis thaliana, named AtNSRa and AtNSRb, code for proteins also localised in nuclear speckles together with certain splicing-related proteins. Interestingly, AtNSR-GFP fusions are relocalised into cytoplasmic granules in certain differentiated root cells and by ectopic expression of the ENOD40 RNA. The AtNSRb gene is regulated by auxin whereas AtNSRa is constitutive. Root growth and lateral root formation of double nsra/nsrb mutants is partially insensitive to auxin. The localisation of these proteins prompted us to explore roles in splicing. No defects in general splicing were observed however analysis of 288 alternatively spliced genes in WT and nsra/nsrb roots in response to auxin revealed 77 changes in splicing profiles in response to auxin from which 51 required AtNSRs. In order to validate the interaction of NSRs with alternatively spliced mRNAs and npcRNAs, we have co-immunoprecipitated NSRs and identified at least 5 interacting alternatively spliced mRNAs and 2 npcRNAs. Expression of the ENOD40 RNA or one interacting ncRNA modulate alternatively splicing in Arabidopsis. In a second chapter, we explored the role of NSRs in the modulation of PTGS triggered by intron-containing transgenes allowing us to link alternatively splicing and silencing. We propose that NSRs may link alternative splicing and the action of non-coding RNA, notably during root growth and development.
13

Towards the development of transgenic banana bunchy top virus (BBTV)-resistant banana plants : interference with replication

Tsao, Theresa Tsun-Hui January 2008 (has links)
Banana bunchy top virus (BBTV) causes one of the most devastating diseases of banana. Transgenic virus resistance is now considered one of the most promising strategies to control BBTV. Pathogen-derived resistance (PDR) strategies have been applied successfully to generate plants that are resistant to numerous different viruses, primarily against those viruses with RNA genomes. BBTV is a circular, single-stranded (css) DNA virus of the family Nanoviridae, which is closely related to the family Geminiviridae. Although there are some successful examples of PDR against geminiviruses, PDR against the nanoviruses has not been reported. Therefore, the aim of this thesis was to investigate the potential of BBTV genes to interfere with virus replication when used as transgenes for engineering banana plants resistance to BBTV. The replication initiation protein (Rep) of nanoviruses is the only viral protein essential for viral replication and represents an ideal target for PDR. Therefore, this thesis focused on the effect of wild-type or mutated Rep genes from BBTV satellite DNAs or the BBTV integral genome on the replication of BBTV in banana embryogenic cell suspensions. A new Rep-encoding satellite DNA, designated BBTV DNA-S4, was isolated from a Vietnamese BBTV isolate and characterised. When the effect of DNA-S4 on the replication of BBTV was examined, it was found that DNA-S4 enhanced the replication of BBTV. When the replicative capabilities of DNA-S4 and the previously characterised Rep-encoding BBTV satellite, DNA-S1, were compared, it was found that the amount of DNA-S4 accumulated to higher levels than DNA-S1. The interaction between BBTV and DNA-S1 was also examined. It was found that over-expression of the Rep encoded by DNA-S1 using ubi1 maize polyubiquitin promoter enhanced replication of BBTV. However, when the Rep-encoded by DNA-S1 was expressed by the native S1 promoter (in plasmid pBT1.1-S1), it suppressed the replication of BBTV. Based on this result, the use of DNA-S1 as a possible transgene to generate PDR against BBTV was investigated. The roles of the Rep-encoding and U5 genes of BBTV DNA-R, and the effects of over-expression of these two genes on BBTV replication were also investigated. Three mutants of BBTV DNA-R were constructed; plasmid pUbi-RepOnly-nos contained the ubi1 promoter driving Rep expression from DNA-R, plasmid pUbi-IntOnly-nos contained the ubi1 promoter driving expression of the DNA-R internal gene product (U5), while plasmid pUbi-R.ORF-nos contained the ubi1 promoter driving the expression of both Rep and the internal U5 gene product. The replication of BBTV was found to be significantly suppressed by pUbi-RepOnly-nos, weakly suppressed by pUbi-IntOnly-nos, but strongly enhanced by pUbi-R.ORF-nos. The effect of mutations in three conserved residues within the BBTV Rep on BBTV replication was also assessed. These mutations were all made in the regions in the ATPase motifs and resulted in changes from hydrophilic to hydrophobic residues (i.e. K187→M, D224→I and N268→L). None of these Rep mutants was able to initiate BBTV replication. However, over-expression of Reps containing the K187→M or N268→L mutations significantly suppressed the replication of BBTV. In summary, the Rep constructs that significantly suppressed replication of DNA-R and -C in banana embryogenic cell suspensions have the potential to confer resistance against BBTV by interfering with virus replication. It may be concluded that BBTV satellite DNAs are not ideal for conferring PDR because they did not suppress BBTV replication consistently. Wild-type Rep transcripts and mutated (i.e. K187→M and N248→L) Rep proteins of BBTV DNA-R, however, when over-expressed by a strong promoter, are all promising candidates for generating BBTV-resistant banana plants.
14

Vliv způsobu indukce RNA interference na umlčování reportérového genu pro GFP u Arabidopsis thaliana / Impact of the mode of RNAi induction on silencing of the reporter GFP gene in Arabidopsis thaliana

Růžičková, Adéla January 2015 (has links)
RNA interference (RNAi) is one of the key mechanisms that are involved in many biological processes such as control of plant gene expression, influence on chromatin arrangement or providing protection against invasive DNA or RNA transposons, viruses and transgenes. In plants, RNAi is triggered by double stranded RNA (dsRNA) that is cleaved by DICER LIKE (DCL) proteins to small RNAs (sRNAs). The size of these sRNAs is in range of 21 - 24 nucleotides (nt). Small RNA acts in the place of origin and they are also a mobile signal which in plants can move to a short distance through plasmodesmata and to a long distance trough phloem. sRNA and Argonaute (AGO) protein form RNA-induced silencing complex (RISC). Together, they recognize the target RNA molecule and contribute to an efficient RNAi phase which may be exhibited by gene silencing at posttranscriptional level (PTGS) or transcriptional level (TGS). The purpose of this study was to compare the effects of silencing constructs, witch in a controlled way differently trigger RNAi directed against the expression of the GFP reporter gene in the model organism Arabidopsis thaliana. Silencing constructs were placed under an inducible promoter activated by the presence of 17-β-estradiol (XVE system). They differed in the way of the dsRNA formation and in the...
15

Studium mechanismu posttranskripčního a transkripčního umlčování transgenů v buněčné linii tabáku BY-2 / Study of the mechanism of posttranscriptional and transcriptional transgene silencing in tobacco BY-2 cell line

Čermák, Vojtěch January 2012 (has links)
The RNA interference is a mechanism, which allows cells to regulate their genes functions, to establish and maintain heterochromatin and to defend them against invasive nucleic acids. In plants, RNA interference is initiated by double-stranded RNA, which is processed by Dicer into small RNAs, usually 20-24nt long. These small RNAs form a complex with Argonaut protein that participates in different processes based on sequence complementarity. This complex can guide mRNA cleavage, translation blocking and chromatin modifications, resulting either into posttranscriptional silencing (by preventing translation of already existing mRNA, PTGS) or transcriptional silencing (by preventing transcription of mRNA, TGS). The first step of this thesis was to establish different ways of triggering PTGS and to evaluate their functionality and efficiency. The next step was a preparation of a system which would allow to study the transition from posttrancriptional to transcriptional silencing. These so called "indicator lines" should allow to observe the timing and dynamics of this process by utilizing fluorescent proteins. This system is also going to enable to evaluate, how different factors are involved in this process - one of the factors is RNA-dependent RNA polymerase 6 (RDR6) which plays an essential role in...

Page generated in 0.1086 seconds