• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 72
  • 13
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 273
  • 169
  • 85
  • 63
  • 34
  • 31
  • 23
  • 19
  • 18
  • 18
  • 18
  • 17
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Metabolism of aflatoxin epoxide by glutathione S-transferase : new insights into GST function /

McHugh, Thomas Erik. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [64]-71).
22

Insights into the multiple functions of glutathione S-transferase P1-1 characterization of its several ligand sites and examination of its interaction with 1-cysteine peroxiredoxin /

Ralat, Luis A. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: Roberta Colman, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
23

Histochemical localization of choline acetyltransferase in the deep cerebellar nuclei of the rat

Petrali, Elena Harriet January 1972 (has links)
A histochemical method for the localization of choline acetyltransferase, the synthesizing enzyme of acetylcholine has been recently developed. Conditions of the method were first investigated and optimized in the spinal cord of the rat where cholinergic neurones are known to be present. Following standardization of the method the localization of the enzyme was studied in the deep cerebellar nuclei. A series of transverse sections were stained to facilitate, allocation of cells demonstrating enzyme activity to their respective nuclei as described in the literature. The presence of choline acetyltransferase was used as a direct indication of a cholinergic neurone, and was found predominantly in the cells in the ventral portion of the lateral nucleus, on the border of the interpositus and lateral nuclei and in the caudal portion of the medial nucleus. The results obtained are consistent with other studies indicating that a portion of the cerebello-thalamic pathway is cholinergic. / Medicine, Faculty of / Cellular and Physiological Sciences, Department of / Graduate
24

Human glutathione S-transferases : characterization, tissue distribution and kinetic studies

Corrigall, Anne Vint January 1988 (has links)
In this study the purification of human basic and near-neutral liver, and human basic and acidic lung glutathione S-transferases (GSH S-T) was undertaken. Purification of the basic and near-neutral GSH S-T was achieved using a combination of affinity chromatography, chromatofocusing and immunoaffinity chromatography. Affinity and ion exchange chromatography were employed in the purification of the basic and acidic lung forms. The purified proteins had similar physicochemical characteristics to the GSH S-T purified by others. The binding of 1-chloro-2,4-dinitrobenzene (CDNB) to the 3 classes of human GSH S-T, viz. basic, near-neutral and acidic and the effects of such binding, if any, were examined. Human acidic lung GSH S-T is irreversibly inactivated by CDNB in the absence of the co-substrate glutathione (GSH). The time-dependent inactivation is pseudo-first order and demonstrates saturation kinetics, suggesting that inactivation occurs from an EI complex. GSH protects the enzyme against CDNB inactivation. In contrast, the basic and near-neutral GSH S-T are not significantly inactivated by CDNB. Incubation with [¹⁴C]-CDNB indicated covalent binding to all 3 classes of GSH S-T. When the basic and acidic GSH S-T were incubated with [¹⁴C]-CDNB and GSH, cleaved with cyanogen bromide, and chromatographed by HPLC, a single peptide fraction was found to be labelled in both classes. Incubation in the absence of GSH yielded 1 and 2 additional labelled peptide fractions for the basic and acidic transferases, respectively. These results suggest that while CDNB arylates all 3 classes of human GSH S-T, only the acidic GSH S-T possesses a specific GSH-sensitive CDNB binding site, which when occupied leads to time-dependent inactivation of the enzyme. The tissue distribution and localization of the 3 classes of human GSH S-T in normal and tumour tissue was examined. Antibodies to representatives of the 3 classes were raised in rabbits, and radial immunodiffusion employed to quantitate their concentrations in the cytosol of 18 organs from 9 individuals. The data provide the first direct, quantitative evidence for the inter-individual and inter-organ variation suggested by earlier workers. The absence of the near-neutral GSH S-T in 5 of the 9 individuals studied confirms an earlier suggestion of a "null" allele for this transferase. Basic and acidic GSH S-T (apart from in a single liver), were always present. Near-neutral GSH S-T, when present, were found in all tissues examined. The marked inter-organ and inter-individual variation observed in this study may explain individual and organ susceptibility to drugs, toxins and carcinogens. The immunohistochemical localization of the 3 classes of GSH S-T reveals important differences in their localization, and may provide insight into their functions in various organs and tissues.
25

Structural, functional and stability characterisation of human glutathione S-transferase Pi

Mhlanga, Donald January 2018 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements in fulfilment of the degree for Master of Science. October 2018 / Glutathione S-transferases (GSTs) are Phase II detoxification enzymes that catalyse the conjugation of glutathione (GSH) to non-polar xenobiotic compounds to form water-soluble metabolites. Despite the low level of sequence similarity, the different GST classes follow the same canonical fold. hGSTP1-1 belongs to the Pi class and is involved in detoxification, as well as other non-classical roles such as regulating the MAP kinase pathway, protecting cells from nitrosative stress and regulating the function of 1-Cys peroxiredoxin. The structure, function and stability of GSTP1-1 was characterised to gain a better understanding of the general characteristics of the enzyme. The heterologous expression of hGSTP1-1 in Escherichia coli produces high yields of the enzyme that is then purified using immobilised metal affinity chromatography. A GSH-CDNB conjugation assay shows that the enzyme catalyses this reaction with a specific activity of 55.5 μmol/min/mg. The enzyme also binds 8-anilinonaphthalene-1-sulfonic acid (ANS), resulting in a blue shift and a two-fold increase in the fluorescence intensity of ANS. Far-UV circular dichroism shows that hGSTP1-1 is a predominantly alpha-helical protein, while intrinsic fluorescence studies show that the enzyme has Trp residues. Studies done using size exclusion HPLC show that the protein adopts a monomeric structure when exposed to high salt concentrations. Thermal unfolding of hGSTP1-1 shows that the enzyme unfolds irreversibly when exposed to increasing temperatures. Urea denaturation of the enzyme follows a two-state model (N2 ↔ 2U) and shows that domain 1 and domain 2 unfold in a cooperative manner. / E.R. 2019
26

Regulation of glutathione transferase P1-1 by S-nitrosation

Balchin, David 12 June 2014 (has links)
S-Nitrosation is a post-translational modification of protein cysteine residues, which occurs in response to cellular oxidative stress. Although it is increasingly being linked to physiologically important processes, the molecular basis for protein regulation by this modification remains poorly understood. Biophysical methods were used to elucidate the mechanism and molecular consequences of S-nitrosation of glutathione transferase (GST) P1-1, a ubiquitous homodimeric detoxification enzyme and important target for cancer therapeutics. Transient kinetic techniques, isothermal titration calorimetry and protein engineering were used to develop a minimal mechanism for S-nitrosation of GSTP1-1, the first for any protein. Cys47 of GSTP1-1 is S-nitrosated according to a conformational selection mechanism, with the chemical step limited by a pre-equilibrium between the open and closed conformations of a dynamic helix at the active site. Cys101, in contrast, is Snitrosated in a single step but is subject to negative cooperativity due to steric hindrance at the dimer interface. S-Nitrosation at Cys47 and Cys101 was found to reduce the detoxification activity of GSTP1-1 by 94%. Circular dichroism spectroscopy, acrylamide quenching and amide hydrogen-deuterium exchange mass spectrometry experiments revealed that the loss of activity is due to the introduction of local disorder at the active site. Furthermore, the modification destabilises domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation, and provide general insight into the mechanism of S-nitrosation and its effect protein stability and dynamics.
27

Further elucidating the steroid isomerisation reaction mechanism of GSTA3-3

Robertson, Gary Jay January 2017 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2017. / Glutathione S-transferase A3-3 is the most catalytically efficient steroid isomerase enzyme known in humans, transforming Δ5-androstene-3-17-dione into Δ4-androstene-3-17-dione. Though its mechanism of action remains unsolved. GSTA3-3 catalyses this reaction with at least ten-fold greater efficiency than GSTA1-1, its closest competitor in the Alpha class of GSTs. In order to examine the differences between Alpha class GSTs and to better elucidate the mechanism of GSTA3-3 the roles of Tyr9 and Arg15 were examined. Tyr9 is the major catalytic residue of Alpha class GSTs and Arg15 is proposed to be catalytically important to GSTA3-3 but never before experimentally examined. While the structure and stability of the Alpha class enzymes are highly comparable, subtle differences at the G-site of the enzymes account for GSTA3-3 having a ten-fold greater affinity for the substrate GSH. Y9F and R15L mutations, singly or together, have no effect on the structure and stability of GSTA3-3 (the same effect they have on GSTA1-1) despite the R15L mutation removing an interdomain salt-bridge at the active site. Hydrogen-deuterium exchange mass spectrometry also revealed that neither mutation had a significant effect on the conformational dynamics of GSTA3-3. The R15L and Y9F mutations are equally important to the specific activity of the steroid isomerase reaction; however, Arg15 is more important for lowering the pKa of GSH. Lowering the pKa of GSH being how GSTs catalyse their reactions. This suggests an additional role for Tyr9, with an important mechanistic implication. Factoring in the inability to detect an intermediate during the reaction, all data are in agreement with the mechanism being concerted and that Tyr9 acts as a proton shuttle. Additionally, there is evidence to suggest that Arg15 is integral to allowing GSTA3-3 to differentiate between Δ5-androstene-3-17-dione and Δ4-androstene-3-17-dione, indicating that Arg15 is a more important active-site residue than previously recognized. / LG2018
28

Properties of a dehydroalanine analog of glutathione a reactive electrophilic busulfan metabolite /

Peer, Cody J. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xi, 150 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
29

The functional role of Phe-10 and the anomalous Tyr-9 pKa in glutathione S-transferase A1-1 /

Ibarra, Catherine A. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 122-137).
30

The kinetic mechanism of microsomal glutathione transferase 1 (MGST1) /

Svensson, Richard, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 4 uppsatser.

Page generated in 0.3082 seconds