Spelling suggestions: "subject:"transformação afin"" "subject:"transformação afm""
1 |
Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista. / Viewpoint invariant template matching based in radial and circular proejction.Pérez López, Guillermo Angel 23 November 2015 (has links)
Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu dois algoritmos de casamento de modelos invariante por rotação, escala e translação denominados Ciratefi (Circula, radial and template matchings filter) e Forapro (Fourier coefficients of radial and circular projection). As características positivas destes algoritmos são a invariância a mudanças de brilho/contraste e robustez a padrões repetitivos. Na primeira parte desta tese, tornamos Ciratefi invariante a transformações afins, obtendo Aciratefi (Affine-ciratefi). Construímos um banco de imagens para comparar este algoritmo com Asift (Affine-scale invariant feature transform) e Aforapro (Affine-forapro). Asift é considerado atualmente o melhor algoritmo de casamento de imagens invariante afim, e Aforapro foi proposto em nossa dissertação de mestrado. Nossos resultados sugerem que Aciratefi supera Asift na presença combinada de padrões repetitivos, mudanças de brilho/contraste e mudanças de pontos de vista. Na segunda parte desta tese, construímos um algoritmo para filtrar casamentos de pontos-chaves, baseado num conceito que denominamos de coerência geométrica. Aplicamos esta filtragem no bem-conhecido algoritmo Sift (scale invariant feature transform), base do Asift. Avaliamos a nossa proposta no banco de imagens de Mikolajczyk. As taxas de erro obtidas são significativamente menores que as do Sift original. / This work deals with image matching. Image matchings can be modeled as template matching or keypoints matching. These algorithms search a region of the first image in a second image. Our group has developed two template matching algorithms invariant by rotation, scale and translation called Ciratefi (circular, radial and template matching filter) and Forapro (Fourier coefficients of radial and circular projection). The positive characteristics of Ciratefi and Forapro are: the invariance to brightness/contrast changes and robustness to repetitive patterns. In the first part of this work, we make Ciratefi invariant to affine transformations, getting Aciratefi (Affine-ciratefi). We have built a dataset to compare Aciratefi with Asift (Affine-scale invariant feature transform) and Aforapro (Affine-forapro). Asift is currently considered the best affine invariant image matching algorithm, and Aforapro was proposed in our master\'s thesis. Our results suggest that Aciratefi overcome Asift in the combined presence of repetitive patterns, brightness/contrast and viewpoints changes. In the second part of this work, we filter keypoints matchings based on a concept that we call geometric coherence. We apply this filtering in the well-known algorithm Sift (scale invariant feature transform), the basis of Asift. We evaluate our proposal in the Mikolajczyk images database. The error rates obtained are significantly lower than those of the original Sift.
|
2 |
Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista. / Viewpoint invariant template matching based in radial and circular proejction.Guillermo Angel Pérez López 23 November 2015 (has links)
Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu dois algoritmos de casamento de modelos invariante por rotação, escala e translação denominados Ciratefi (Circula, radial and template matchings filter) e Forapro (Fourier coefficients of radial and circular projection). As características positivas destes algoritmos são a invariância a mudanças de brilho/contraste e robustez a padrões repetitivos. Na primeira parte desta tese, tornamos Ciratefi invariante a transformações afins, obtendo Aciratefi (Affine-ciratefi). Construímos um banco de imagens para comparar este algoritmo com Asift (Affine-scale invariant feature transform) e Aforapro (Affine-forapro). Asift é considerado atualmente o melhor algoritmo de casamento de imagens invariante afim, e Aforapro foi proposto em nossa dissertação de mestrado. Nossos resultados sugerem que Aciratefi supera Asift na presença combinada de padrões repetitivos, mudanças de brilho/contraste e mudanças de pontos de vista. Na segunda parte desta tese, construímos um algoritmo para filtrar casamentos de pontos-chaves, baseado num conceito que denominamos de coerência geométrica. Aplicamos esta filtragem no bem-conhecido algoritmo Sift (scale invariant feature transform), base do Asift. Avaliamos a nossa proposta no banco de imagens de Mikolajczyk. As taxas de erro obtidas são significativamente menores que as do Sift original. / This work deals with image matching. Image matchings can be modeled as template matching or keypoints matching. These algorithms search a region of the first image in a second image. Our group has developed two template matching algorithms invariant by rotation, scale and translation called Ciratefi (circular, radial and template matching filter) and Forapro (Fourier coefficients of radial and circular projection). The positive characteristics of Ciratefi and Forapro are: the invariance to brightness/contrast changes and robustness to repetitive patterns. In the first part of this work, we make Ciratefi invariant to affine transformations, getting Aciratefi (Affine-ciratefi). We have built a dataset to compare Aciratefi with Asift (Affine-scale invariant feature transform) and Aforapro (Affine-forapro). Asift is currently considered the best affine invariant image matching algorithm, and Aforapro was proposed in our master\'s thesis. Our results suggest that Aciratefi overcome Asift in the combined presence of repetitive patterns, brightness/contrast and viewpoints changes. In the second part of this work, we filter keypoints matchings based on a concept that we call geometric coherence. We apply this filtering in the well-known algorithm Sift (scale invariant feature transform), the basis of Asift. We evaluate our proposal in the Mikolajczyk images database. The error rates obtained are significantly lower than those of the original Sift.
|
3 |
Uma abordagem de compressão de imagens através de sistemas de funções iteradasReis, Glauco dos Santos 22 August 2011 (has links)
Made available in DSpace on 2016-03-15T19:37:38Z (GMT). No. of bitstreams: 1
Glauco dos Santos Reis.pdf: 1334999 bytes, checksum: d2d72d3f95a449c19482f55f82b7f61e (MD5)
Previous issue date: 2011-08-22 / Fundo Mackenzie de Pesquisa / A new image compression technique is proposed, based on the affine transformations (ATs) that define an iterated function system (IFS). Previous related research in the field has shown that an image may be approximated by iteratively subjecting a set of sub-regions to a group of ATs. In this case, the original image should be partitioned in regions, and each one of the active pixels are transformed by the AT. The new transformed set should be approximated to other image regions. This iterated execution to find ATs for the best set of areas might result in smaller storage space since the similar areas might be replaced by AT coefficients. Despite this advantage, the technique is computationally intensive, because both the sub-regions and the corresponding ATs that have to be searched for. Here, a new form of similarity is proposed, based on the successive points generated by the iteration of affine transformations. By understanding an AT as a discrete dynamical system, with each image point represented by an iteration of the AT, the method captures similarities between these points, namely, those with the same color in the image; by saving the starting point and the transformations coefficients, the points can be iterated back, to reconstruct the original image. This results in lighter computational effort, since the comparison is made point by point, instead of region by region. Experiments were made on a group of 10 images, representing a broad set of distinct features and resolutions. The proposed algorithm competes in terms of storage size, when compared to JPEG, mainly when the image size is small, and the number of colors are reduced, as currently happens for most images used in the Internet. Although the proposed method is faster than the traditional method for IFS compression, it is slower than common file formats like JPEG. / Uma nova técnica para compressão de imagens é proposta, baseada em conjuntos de transformações afins (affine transformations - ATs), normalmente conhecidos como sistemas de funções iteradas (iterated function system -IFS). Pesquisas anteriores mostraram que uma imagem poderia ser aproximada pela aplicação de um grupo de ATs em conjuntos de sub-regiões da imagem, de forma iterativa. Através deste processo, a imagem original seria subdividida em regiões e sobre a coordenada de cada ponto habilitado de cada região seria aplicada uma transformação afim. O resultado representaria um novo conjunto de pontos similares a outras regiões da imagem. A execução de forma iterada deste processo de identificação das ATs para o maior conjunto de regiões similares de uma determinada imagem permitiria uma redução no armazenamento, já que as regiões similares poderiam ser armazenadas como os coeficientes das transformações afins. Apesar desta vantagem em termos de compressão, a técnica é computacionalmente intensiva, pela busca exaustiva de sub-regiões e das ATs geradoras, de forma a proporcionar o melhor preenchimento em outras regiões da imagem. Esta pesquisa propõe uma nova forma de compressão baseada em ATs, utilizando a sequência de pontos gerada pela iteração das ATs. Entendendo uma AT como um sistema dinâmico em tempo discreto, cada novo ponto identificado é consequência direta da iteração da AT sobre o ponto anterior, permitindo a captura de similaridades nesta sequência de pontos. Através do salvamento dos coeficientes das ATs e das coordenadas iniciais, é possível a reconstrução da imagem pela iteração da AT a partir do ponto inicial. Isto pode resultar em menor esforço computacional, pois apenas comparações simples de pontos são necessárias, ao invés de comparações entre os pontos de regiões da imagem. Foram feitos experimentos em um conjunto de 10 classes de imagens, representando um espectro de diferentes características gerais e resoluções. O algoritmo proposto rivaliza em termos de armazenamento quando comparado ao formato JPEG, principalmente para imagens de pequeno tamanho e com número de cores reduzidas, como as utilizadas com frequência na Internet. Apesar de ser mais rápido para a compressão do que outros métodos baseados em IFS, ele é mais lento do que métodos clássicos como o JPEG.
|
4 |
Uma abordagem de compressão de imagens através de sistemas de funções iteradasReis, Glauco dos Santos 22 August 2011 (has links)
Made available in DSpace on 2016-03-15T19:37:41Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-08-22 / Fundo Mackenzie de Pesquisa / A new image compression technique is proposed, based on the affine transformations (ATs) that define an iterated function system (IFS). Previous related research in the field has shown that an image may be approximated by iteratively subjecting a set of sub-regions to a group of ATs. In this case, the original image should be partitioned in regions, and each one of the active pixels are transformed by the AT. The new transformed set should be approximated to other image regions. This iterated execution to find ATs for the best set of areas might result in smaller storage space since the similar areas might be replaced by AT coefficients. Despite this advantage, the technique is computationally intensive, because both the sub-regions and the corresponding ATs that have to be searched for. Here, a new form of similarity is proposed, based on the successive points generated by the iteration of affine transformations. By understanding an AT as a discrete dynamical system, with each image point represented by an iteration of the AT, the method captures similarities between these points, namely, those with the same color in the image; by saving the starting point and the transformations coefficients, the points can be iterated back, to reconstruct the original image. This results in lighter computational effort, since the comparison is made point by point, instead of region by region. Experiments were made on a group of 10 images, representing a broad set of distinct features and resolutions. The proposed algorithm competes in terms of storage size, when compared to JPEG, mainly when the image size is small, and the number of colors are reduced, as currently happens for most images used in the Internet. Although the proposed method is faster than the traditional method for IFS compression, it is slower than common file formats like JPEG. / Uma nova técnica para compressão de imagens é proposta, baseada em conjuntos de transformações afins (affine transformations - ATs), normalmente conhecidos como sistemas de funções iteradas (iterated function system - IFS).
Pesquisas anteriores mostraram que uma imagem poderia ser aproximada pela aplicação de um grupo de ATs em conjuntos de sub-regiões da imagem, de forma iterativa. Através deste processo, a imagem original seria subdividida em regiões e sobre a coordenada de cada ponto habilitado de cada região seria aplicada uma transformação afim. O resultado representaria um novo conjunto de pontos similares a outras regiões da imagem. A execução de forma iterada deste processo de identificação das ATs para o maior conjunto de regiões similares de uma determinada imagem permitiria uma redução no armazenamento, já que as regiões similares poderiam ser armazenadas como os coeficientes das transformações afins. Apesar desta vantagem em termos de compressão, a técnica é computacionalmente intensiva, pela busca exaustiva de sub-regiões e das ATs geradoras, de forma a proporcionar o melhor preenchimento em outras regiões da imagem. Esta pesquisa propõe uma nova forma de compressão baseada em ATs, utilizando a sequência de pontos gerada pela iteração das ATs. Entendendo uma AT como um sistema dinâmico em tempo discreto, cada novo ponto identificado é consequência direta da iteração da AT sobre o ponto anterior, permitindo a captura de similaridades nesta sequência de pontos. Através do salvamento dos coeficientes das ATs e das coordenadas iniciais, é possível a reconstrução da imagem pela iteração da AT a partir do ponto inicial. Isto pode resultar em menor esforço computacional, pois apenas comparações simples de pontos são necessárias, ao invés de comparações entre os pontos de regiões da imagem. Foram feitos experimentos em um conjunto de 10 classes de imagens, representando um espectro de diferentes características gerais e resoluções. O algoritmo proposto rivaliza em termos de armazenamento quando comparado ao formato JPEG, principalmente para imagens de pequeno tamanho e com número de cores reduzidas, como as utilizadas com frequência na Internet. Apesar de ser mais rápido para a compressão do que outros métodos baseados em IFS, ele é mais lento do que métodos clássicos como o JPEG.
|
Page generated in 0.0662 seconds