• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Números complexos e a transformação de Mobius / Complex numbers and Mobius transformation

Pereira, Helder Rodrigues 05 July 2013 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-17T20:41:31Z No. of bitstreams: 2 Pereira, Helder Rodrigues - 2013.pdf: 841356 bytes, checksum: 3bd0e20d40243c777f889a858fd653d3 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Érica, olhe nas orientações como deve ser digitado as palavras chaves e como deve ser a citação. - Palavras chaves só use a primeira letra maiúscula - ALCÂNTARA, Guizelle Aparecida de. Caracterização farmacognostica e atividade antimicrobiana da folha e casca do caule da myrciarostratadc.(myrtaceae). 2012. 41 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2012. on 2014-09-18T12:30:53Z (GMT) / Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-18T18:16:25Z No. of bitstreams: 2 Pereira, Helder Rodrigues - 2013.pdf: 841356 bytes, checksum: 3bd0e20d40243c777f889a858fd653d3 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-18T21:46:11Z (GMT) No. of bitstreams: 2 Pereira, Helder Rodrigues - 2013.pdf: 841356 bytes, checksum: 3bd0e20d40243c777f889a858fd653d3 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-18T21:46:11Z (GMT). No. of bitstreams: 2 Pereira, Helder Rodrigues - 2013.pdf: 841356 bytes, checksum: 3bd0e20d40243c777f889a858fd653d3 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-07-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The set of complex numbers arose from the necessity of expanding the set of real numbers with the aim of solving algebraic equations. That has happened in Europe in the sixteenth century. Great Italian mathematicians as Scipione , Tartaglia, Cardano and Bombelli, contributed. This was the initial step that now allows us to know the square root of a negative number. A set numeric need not necessarily associated elements numbering, measuring or a count. O set of parts, a set of objects, provided the operations union and intersection, can be a set number even if its elements are not numbers. The body unordered of the complex numbers is a set of numbers (where the numbers are ordered pairs ) and can be represented by other structures, isomorphs to this set as the square matrices as two or classes of residual polynomial. Certain complex functions contribute for a better understanding of geometric transformations. The transformation of M obius is a good example of complex function,applied on a curve that can generate the e ects of rotation, translation, dilation (or contraction) and inversion. / O conjunto dos números complexos surgiu da necessidade da expansão do conjunto dos números reais visando a resolução de equações algébricas. O fato se deu na Europa no século dezesseis. Grandes matemáticos italianos como Scipione, Tartaglia, Cardano e Bombelli contribuíram para isto. Este foi o passo inicial que hoje nos permite conhecer as raízes quadradas de um número negativo. Um conjunto numérico não precisa ter necessariamente elementos associados à numeração, medição ou a contagem. O conjunto das partes de um conjunto de objetos, munido das operações união e interseção, pode ser um conjunto numérico mesmo que seus elementos não sejam números. O corpo não ordenado dos números complexos é um conjunto numérico (onde os nú- meros são pares ordenados) e pode ser representado por outras estruturas isomorfas a este conjunto como as matrizes quadradas de ordem dois ou como classes de restos de polinômios. Certas funções complexas colaboram para um melhor entendimento das transformações geométricas. A transformação de M obius é um bom exemplo de função complexa que aplicada sobre uma curva pode gerar os efeitos de rotação, translação, dilatação ( ou contração) e inversão.

Page generated in 0.1072 seconds