Spelling suggestions: "subject:"transformer betworks"" "subject:"transformer conetworks""
1 |
Improving Context Awareness of Transformer Networks using Retrieval-Augmented GenerationDo, Anh, Tran, Saga January 2024 (has links)
The Thermo-Calc software is a key tool in the research process for many material engineers. However, integrating multiple modules in Thermo-Calc requires the user to write code in a Python-based language, which can be challenging for novice programmers. This project aims to enable the generation of such code from user prompts by using existing generative AI models. In particular, we use a retrieval-augmented generation architecture applied to LLaMA and Mistral models. We use Code LLaMA-Instruct models with 7, 13, and 34 billion parameters, and a Mistral-Instruct model with 7 billion parameters. These models are all based on LLaMA 2. We also use a LLaMA 3-Instruct model with 8 billion parameters. All these models are instruction-tuned, which suggests that they have the capability to interpret natural language and identify appropriate options for a command-line program such as Python. In our testing, the LLaMA 3-Instruct model performed best, achieving 53% on the industry benchmark HumanEval and 49% on our internal adequacy assessment at pass@1, which is the expected probability of getting a correct solution when generating a response. This indicates that the model generates approximately every other answer correct. Due to GPU memory limitations, we had to apply quantisation to process the 13 and 34 billion parameter models. Our results revealed a mismatch between model size and optimal levels of quantisation, indicating that reduced precision adversely affects the performance of these models. Our findings suggest that a properly customised large language model can greatly reduce the coding effort of novice programmers, thereby improving productivity in material research.
|
2 |
Context matters : Classifying Swedish texts using BERT's deep bidirectional word embeddingsHolmer, Daniel January 2020 (has links)
When classifying texts using a linear classifier, the texts are commonly represented as feature vectors. Previous methods to represent features as vectors have been unable to capture the context of individual words in the texts, in theory leading to a poor representation of natural language. Bidirectional Encoder Representations from Transformers (BERT), uses a multi-headed self-attention mechanism to create deep bidirectional feature representations, able to model the whole context of all words in a sequence. A BERT model uses a transfer learning approach, where it is pre-trained on a large amount of data and can be further fine-tuned for several down-stream tasks. This thesis uses one multilingual, and two dedicated Swedish BERT models, for the task of classifying Swedish texts as of either easy-to-read or standard complexity in their respective domains. The performance on the text classification task using the different models is then compared both with feature representation methods used in earlier studies, as well as with the other BERT models. The results show that all models performed better on the classification task than the previous methods of feature representation. Furthermore, the dedicated Swedish models show better performance than the multilingual model, with the Swedish model pre-trained on more diverse data outperforming the other.
|
Page generated in 0.0747 seconds