Spelling suggestions: "subject:"transgene tiere"" "subject:"transgene niere""
21 |
Generation and analysis of transgenic mice expressing ovalbumin as a neo-self antigen under control of the myelin basic protein promoter / Generation and analysis of transgenic mice expressing ovalbumin as a neo-self antigen under control of the myelin basic protein promoterToben, Catherine Gisela January 2005 (has links) (PDF)
In this project two novel murine autoimmune models were to be established in an attempt to further investigate the nervous system disorders of Multiple Sclerosis and Guillain Barré Syndrome. Previous experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN) models have demonstrated that T cells play a major role in these diseases. Which roles CD4 and CD8 T cells specifically have in the initiation, propagation and termination of an autoimmune nervous system disorder remains controversial. To this end two transgenic mice specifically expressing the neo-antigen (Ag) ovalbumin (OVA) in either the central nervous system (CNS) or peripheral nervous system (PNS) were to be generated. The myelin basic protein (MBP) is a major component of the myelin sheath both within the CNS and the PNS. Therefore the MBP promoter was employed for its distinct regulatory elements to facilitate exclusive CNS or PNS OVA expression. The adoptive transfer of OVA specific MHCI restricted (OT-I) and MHCII restricted (OT-II) TCR Tg T cells extended the OVA Tg mouse model by allowing potentially encephalitogenic T cells to be tracked in vivo. Specificity for the target Ag should enable the dynamic role of antigen specific T cells in neuroinflammatory diseases to be revealed in more detail. / Im Rahmen der vorliegenden Arbeit wurden zwei neue Mausmodelle für Autoimmunerkrankungen etabliert, um weitere Fortschritte bei der Aufklärung der zellulären und molekularen Interaktionen bei den Erkrankungen des Nervensystems Multiple Sklerose und Guillain Barré Syndrom zu erzielen. In früheren Experimenten mit EAE (experimentelle autoimmune Enzephalomyelitis) und EAN (experimentelle autoimmune Neuritis) konnte bereits gezeigt werden, dass T-Zellen eine Hauptrolle bei diesen Erkrankungen spielen, wobei jedoch die Bedeutung von CD4 bzw. CD8 T-Zellen im Einzelnen noch nicht aufgeklärt ist. Zu diesem Zwecke sollten zwei transgene (Tg) Mauslinien generiert werden, die speziell entweder im peripheren (PNS) oder im zentralen (ZNS) Nervensystem das Zielantigen OVA exprimieren. MBP ist eine Hauptkomponente der Myelinscheide sowohl im ZNS als auch im PNS. Daher kam der Myelin Basic Protein (MBP) Promoter zum Einsatz, dessen unterschiedliche regulatorischen Elemente eine Expression von intaktem OVA ausschließlich im ZNS bzw. ausschließlich im PNS steuern können. Eine Erweiterung dieser OVA tg Mausmodelle stellte der adoptive Transfer von OVA spezifischen MHCI-restringierten OTI und MHCII-restringierten OTII T-Zellen dar, da es so möglich wurde, potentiell enzephalitogene T-Zellen in vivo zu verfolgen. Dadurch sollte ebenfalls eine detailliertere Darstellung der dynamischen Rolle von antigenspezifischen T-Zellen bei neuroinflammatorischen Erkrankungen ermöglicht werden.
|
22 |
Generation and analysis of transgenic mice expressing ovalbumin as a neo-self antigen under control of the myelin basic protein promoterToben, Catherine Gisela. Unknown Date (has links) (PDF)
University, Diss., 2005--Würzburg. / Erscheinungsjahr an der Haupttitelstelle: 2005.
|
23 |
Bedeutung von Insulin-like growth factor II (IGF-II) und IGF-Bindungsprotein-4 in der Kolonkarzinogenese In-vitro- und In-vivo-Studien /Diehl, Daniela. January 2004 (has links) (PDF)
München, Techn. Univ., Diss., 2004.
|
24 |
Induzierbare Cre-vermittelte Rekombination im glatten Muskel der MausKühbandner, Susanne. January 2001 (has links) (PDF)
München, Techn. Univ., Diss., 2001.
|
25 |
Funktionsanalyse alpha2-adrenerger Rezeptoren auf molekularer und transgener Ebene / Analysis of functions of alpha2-adrenergic receptors at molecular and transgenic levelsSchickinger, Stefanie January 2008 (has links) (PDF)
alpha2-adrenerge Rezeptoren, von denen drei verschiedene Subtypen (alpha2A, alpha2B, alpha2C) kloniert wurden, gehören zur Familie der G-Protein-gekoppelten Rezeptoren und vermitteln vielfältige physiologische Funktionen der Transmitter Adrenalin und Noradrenalin. Im Rahmen dieser Arbeit sollte untersucht werden, inwieweit Rezeptorsubtypen, die subzelluläre Lokalisation von Rezeptoren oder der Differenzierungsstatus einer Zelle für die funktionelle Diversität der alpha2-Rezeptor-Effekte in vivo verantwortlich sind. Im ersten Teil des Projektes wurde ein transgenes Mausmodell untersucht, bei dem selektiv alpha2A-Rezeptoren unter Kontrolle des Dopamin-beta-Hydroxylase Promotors in adrenergen Neuronen exprimiert wurden. In diesem Modell sollte getestet werden, ob ein einzelner Rezeptorsubtyp in den verschiedenen Neuronen des sympathischen Nervensystems in vivo identische Funktionen hat. Transgene alpha2A-Rezeptoren hemmten in vivo zwar die Freisetzung von Noradrenalin aus sympathischen Nervenfasern nicht aber die Exozytose von Adrenalin aus dem Nebennierenmark. Deshalb stellte sich die Frage, ob die Rezeptorfunktion von der Morphologie, dem Differenzierungsstatus der Zellen oder von der subzellulären Lokalisation der Rezeptoren abhängt. Hierfür wurden alpha2A-Rezeptoren durch Varianten des grün fluoreszierenden Proteins markiert und mittels FRET-Fluoreszenzmikroskopie untersucht. In PC12 Phäochromozytomzellen, die durch NGF zum Auswachsen neuronaler Fortsätze stimuliert wurden, waren die Agonist-bedingten Konformationsänderungen von alpha2A-Rezeptoren jedoch weder vom Differenzierungsstatus der Zellen noch von deren subzellulärer Lokalisation abhängig. Lediglich in transient transfizierten Zellen waren im Vergleich zu stabil transfizierten Zellen höhere Agonist-Konzentrationen zur Rezeptoraktivierung erforderlich. Diese Befunde zeigen, dass zusätzlich zur Diversität der Rezeptorsubtypen auf Proteinebene der zelluläre Kontext, in dem ein Rezeptor exprimiert wird, eine ganz wesentliche Rolle für dessen Funktion spielt. / alpha2-adrenergic receptors of which three different subtypes were cloned (alpha2A, alpha2B, alpha2C), are part of the family of G-protein coupled receptors and mediate many physiological functions of the transmitters adrenaline and noradrenaline. This study was initiated to determine whether receptor subtypes, their subcellular localization or the status of differentiation of a cell are responsible for the functional diversity of effects of alpha2-adrenergic receptors in vivo. In the first part of this project a transgenic mouse model was characterized, in which alpha2-adrenergic receptors were expressed under control of the dopamine-beta-hydroxylase-promotor in adrenergic neurons selectively. This model was used to test whether a single receptor subtype has identical functions in different neurons of the sympathetic nervous system in vivo. Transgenic alpha2A-adrenergic receptors inhibited the release of noradrenaline from sympathetic nerves in vivo, but not the exocytosis of adrenaline from the adrenal medulla. Therefore the question arose whether the functions of receptors are dependent on cell morphology, the status of differentiation of cells or the subcellular localization of receptors. To address this question, alpha2A-receptors were tagged with variants of the green fluorescent protein and investigated by means of FRET fluorescence microscopy. In PC12 rat pheochromocytoma cells which were stimulated by nerve growth factor to develop neurites, the conformational changes of alpha2A-adrenergic receptors upon agonist activation, however, did not dependent on the status of cellular differentiation or on the subcellular localization of receptors. Only in transiently transfected cells, higher agonist concentrations were necessary for the activation of receptors as determined by FRET microscopy. These findings demonstrate that the cellular context in which receptor subtypes are expressed play an essential role for their function.
|
26 |
Development of transgenic Ambystoma mexicanum (axolotl) to study cell fate during development and regenerationSobkow, Lidia 18 April 2006 (has links) (PDF)
The establishment of transgenesisi in axolotls is crucial for studying development and regeneration, as it would allow for long-term fate tracing as well as gene expression analysis, therefore we were interested in both obtaining animals expresing the transgene with little mosaicism in F0 generation and transgenesis. We demonstrate here that plasmid injection into one cell stage axolotl embryo generates transgenic animals that display germline transmission of a transgene. However, the efficiency of simple plasmid injection is very low, expression of the transgene is mosaic and seems to be promoter dependant. We have tested several methods of transgenesis developed in other systems. First we used Adeno-Associated Viral Terminal Repeats inserted into the injected construct to enhance the expression level of the transgene and reduce mosaicism. However, in the axolotl system we do not observe the enhancement of expression. Moreover, the expression appeared to be transient and disappeared after two months. Further, we tested the effect of the inclusion of ISceI meganuclease in the injections, succesful transgenesis method in the medaka system. It resulted in a higher percentage of F0 animals displaying strong , stable expression throughout the body. This represents the first demonstration in the axolotl of germline transmission of the transgene. Using this technique we have generated a germline transgenic anima expressing GFP ubiquitously in all tissue examined. We have used this anima to study cell fate in the dirsal fin during development. We have discovered a contribution of somite cells to dorsal fin mesenchyme in the axolotl, which was previously assumed to derive solely from neural crest. We have also studied the role of blood during tail regeneration by transplanting the ventral blood-forming region from GFP+ embryos into unlabeled host. During tail regeneration, we do not observe GFP+ cells contributing to muscle or nerve, suggesting that during tail regeneration blood stem cells do not undergo significant plasticity. We are interested in characterization of pluripotency of blastema cells. Previously, it has been shown that neural progenitor cells form the spinal cord can transdifferentiate to muscle and other tissue types in the regenerating tail. To test if blastema cells have the potency of differentiating into a neural tissue , we transplanted GFP+ 4day blastema into an injured spinal cord. Our result shows that blastema cells don't seem to contribute to the regenerating spinal cord.
|
27 |
Development of transgenic Ambystoma mexicanum (axolotl) to study cell fate during development and regenerationSobkow, Lidia 03 May 2006 (has links)
The establishment of transgenesisi in axolotls is crucial for studying development and regeneration, as it would allow for long-term fate tracing as well as gene expression analysis, therefore we were interested in both obtaining animals expresing the transgene with little mosaicism in F0 generation and transgenesis. We demonstrate here that plasmid injection into one cell stage axolotl embryo generates transgenic animals that display germline transmission of a transgene. However, the efficiency of simple plasmid injection is very low, expression of the transgene is mosaic and seems to be promoter dependant. We have tested several methods of transgenesis developed in other systems. First we used Adeno-Associated Viral Terminal Repeats inserted into the injected construct to enhance the expression level of the transgene and reduce mosaicism. However, in the axolotl system we do not observe the enhancement of expression. Moreover, the expression appeared to be transient and disappeared after two months. Further, we tested the effect of the inclusion of ISceI meganuclease in the injections, succesful transgenesis method in the medaka system. It resulted in a higher percentage of F0 animals displaying strong , stable expression throughout the body. This represents the first demonstration in the axolotl of germline transmission of the transgene. Using this technique we have generated a germline transgenic anima expressing GFP ubiquitously in all tissue examined. We have used this anima to study cell fate in the dirsal fin during development. We have discovered a contribution of somite cells to dorsal fin mesenchyme in the axolotl, which was previously assumed to derive solely from neural crest. We have also studied the role of blood during tail regeneration by transplanting the ventral blood-forming region from GFP+ embryos into unlabeled host. During tail regeneration, we do not observe GFP+ cells contributing to muscle or nerve, suggesting that during tail regeneration blood stem cells do not undergo significant plasticity. We are interested in characterization of pluripotency of blastema cells. Previously, it has been shown that neural progenitor cells form the spinal cord can transdifferentiate to muscle and other tissue types in the regenerating tail. To test if blastema cells have the potency of differentiating into a neural tissue , we transplanted GFP+ 4day blastema into an injured spinal cord. Our result shows that blastema cells don't seem to contribute to the regenerating spinal cord.
|
Page generated in 0.0473 seconds