• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of an inducible and reversible mouse model of podocyte effacement

Stringer, Colin D.M. 31 August 2011 (has links)
Podocytes are specialized epithelial cells which wrap glomerular capillaries with numerous interdigitating foot processes (FP). Between adjacent FPs a unique junction, the slit diaphragm (SD), functions as the final blood filtration barrier. Actin organization is critical for maintaining FP structure and SD function, and the adaptor protein Nck can bind an intracellular SD component to couple it with actin regulators. Podocyte-specific deletion of Nck in mice results in proteinuria and FP effacement. To better understand FP remodelling, we have pursued a transgenic mouse model utilizing an inducible and reversible dominant negative Nck (DN-Nck) to prevent signalling to actin regulators, exclusively in podocytes. Effects of DN-Nck were first confirmed in vitro, and transgenic mice were then generated and induced to express DN-Nck. Despite obtaining several mice which exhibited a mild renal phenotype, transgene expression appeared to be lost in successive generations. Full in vivo analysis awaits generation of additional transgenic founders.
12

Role of the Prader-Willi syndrome proteins necdin and Magel2 in the nervous system

Tennese, Alysa Unknown Date
No description available.
13

B-cell Lymphoma-2 (Bcl-2) Is an Essential Regulator of Adult Hippocampal Neurogenesis

Ceizar, Maheen January 2012 (has links)
Of the thousands of dividing progenitor cells (PCs) generated daily in the adult brain only a very small proportion survive to become mature neurons through the process of neurogenesis. Identification of the mechanisms that regulate cell death associated with neurogenesis would aid in harnessing the potential therapeutic value of PCs. Apoptosis, or programmed cell death, is suggested to regulate death of PCs in the adult brain as overexpression of B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, enhances the survival of new neurons. To directly assess if Bcl-2 is a regulator of apoptosis in PCs, this study examined the outcome of removal of Bcl-2 from the developing PCs in the adult mouse brain. Retroviral mediated gene transfer of Cre into adult floxed Bcl-2 mice eliminated Bcl-2 from developing PCs and resulted in the complete absence of new neurons at 30 days post viral injection. Similarly, Bcl-2 removal through the use of nestin-induced conditional knockout mice resulted in reduced number of mature neurons. The function of Bcl-2 in the PCs was also dependent on Bcl-2-associated X (BAX) protein, as demonstrated by an increase in new neurons formed following viral-mediated removal of Bcl-2 in BAX knockout mice. Together these findings demonstrate that Bcl-2 is an essential regulator of neurogenesis in the adult hippocampus.
14

Hippocampal dysfunction in the 3xTgAD mouse model of Alzheimer's disease

Davis, Katherine January 2012 (has links)
Alzheimer’s disease (AD) is a neurodegenerative disorder, characterised by severe memory loss and the accumulation of amyloid-beta (Aβ) and tau pathology within neocortex and medial temporal lobe (MTL) structures. Episodic memory impairment is a defining feature of early AD. The hippocampal formation (HF), a major network involved in both memory formation and retrieval is one of the first areas affected by AD pathology. However, the aetiology of AD is unknown; specifically how Aβ and tau pathologies cause memory impairment and how the physiological function of HF is affected. In this thesis, the 3xTgAD mouse was used as a high fidelity model of human AD pathological progression to study the function of HF during early (intracellular Aβ) and more progressive (extracellular plaque and hyperphosphorylated tau pathology) AD stages, referred to as ‘young’ and ‘old’ respectively. Specifically we: i) applied the hippocampal-dependent What-Where-Which (WWWhich) task to study the onset and progression of episodic-like memory decline (previously uncharacterised in the 3xTgAD mouse); ii) examined allocentric spatial memory in radial arm water maze (RAWM) and spontaneous alternation (SA) behaviour in T-Maze to discern whether cognitive differences exist between spontaneous and negatively reinforced tasks (the latter could be influenced by an exaggerated stress response); and iii) performed electrophysiological recordings in vivo from the HF of urethane-anaesthetised 3xTgAD and control mice to study basic synaptic connectivity, short-term synaptic plasticity and neuronal reverberation across the CA1-DG axis using a multi-site electrode. Our results showed an early and specific deficit for WWWhich episodic-like memory in the 3xTgAD model, with a decline in performance witnessed in mice as young as 3 months. In contrast, 3xTgAD component memory comprising single or dual associations of ‘What’, ‘Where’, ‘Which’ and ‘When’ remained intact suggesting the episodic impairment was due to dysfunction during the association of three component information streams within hippocampus (Chapters 3 and 4). 3xTgAD mice were equally impaired for allocentric spatial memory in RAWM and in their SA behaviour, suggesting no inherent advantage of examining cognition in paradigms which elicit behavioural distress (Chapter 5). We witnessed the development of subtle synaptic abnormalities in young 3xTgAD mice in the form of enhanced short-term paired pulse facilitation in CA1 and DG, however, a paucity of response facilitation in CA1 in response to train stimulation. In contrast, we saw intact basic synaptic function (fibre integrity and synaptic connectivity) in 3xTgAD mice of both young and old ages, suggesting gross hippocampal circuitry remained in place (Chapter 6). Finally, we saw an effect of normal ageing on cognition in the WWWhich and spatial tasks (Chapters 4 and 5), and a decline in neuronal reverberation with age in control and 3xTgAD mice. Dysfunction in these two parameters (behavioural and electrophysiological) coincided with the onset of intracellular Aβ accumulation within HF in 3xTgAD mice. This suggests a role of intracellular Aβ in impairing the physiological function of HF in AD which translates as cognitive decline in hippocampal-dependent forms of memory. Episodic memory was found to be especially sensitive to AD-related pathology and impairment, thus the WWWhich task may be applied to faithfully study the onset of cognitive decline in other AD mouse models. Further examination of the relative contribution of Aβ to hippocampal dysfunction in the 3xTgAD model is required.
15

Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I

Bogomolovas, Julius, Fleming, Jennifer R., Anderson, Brian R., Williams, Rhys, Lange, Stephan, Simon, Bernd, Khan, Muzamil M., Rudolf, Rüdiger, Franke, Barbara, Bullard, Belinda, Rigden, Daniel J., Granzier, Henk, Labeit, Siegfried, Mayans, Olga 28 September 2016 (has links)
Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy (ARVC). We used structural biology, computational simulations and transgenic muscle in vivo methods to track the effect of the mutation from the molecular to the organismal level. The data show that the T2850I exchange is compatible with the domain three-dimensional fold, but that it strongly destabilizes it. Further, it induces a change in the conformational dynamics of the titin chain that alters its reactivity, causing the formation of aberrant interactions in the sarcomere. Echocardiography of knock-in mice indicated a mild diastolic dysfunction arising from increased myocardial stiffness. In conclusion, our data provide evidence that single mSNPs in titin's I-band can alter overall muscle behaviour. Our suggested mechanisms of disease are the development of non-native sarcomeric interactions and titin instability leading to a reduced I-band compliance. However, understanding the T2850I-induced ARVC pathology mechanistically remains a complex problem and will require a deeper understanding of the sarcomeric context of the titin region affected.
16

An anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer's disease

Varnum, Megan Marissa 03 November 2015 (has links)
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β peptide (Aβ) in the brain and intraneuronal hyperphosphorylated tau. Microglia in the brain adopt M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes similar to peripheral monocytes. M1 microglia negatively affect neurogenesis and have reduced phagocytic capabilities whereas M2 microglia can enhance neurogenesis and support phagocytosis. Cluster of Differentiation-200 (CD200) is an anti-inflammatory glycoprotein physiologically expressed on neurons and lymphocytes, and its receptors (CD200R1 and CD200R3) are expressed on glia. Both AD patients and mouse models of AD show an age-related or Aβ-induced reduction in neural CD200 that may contribute to M1-skewing of microglia in AD. We hypothesize that CD200 skews microglia to an M2 phenotype, and that genetic over-expression of CD200 in transgenic mice expressing the Swedish familial AD mutation of human β-amyloid precursor protein (APP mice) can restore neurogenesis and enhance Aβ clearance in the hippocampus. In this study, we constructed a tetracycline-controlled transactivator-inducible adeno-associated virus serotype 2/1 expressing full-length CD200 (AAV2/1-CD200) or green fluorescent protein (AAV2/1- GFP). These were bilaterally injected into the hippocampi at 6 months of age, and mice were sacrificed at 12 months of age. AAV2/1-GFP-injected APP mice showed a reduction in number of proliferating neural stem cells (NSCs) by 65.0% and differentiating NSCs by 70.5% in the dentate gyrus compared to wild-type controls. AAV2/1-CD200 restored these neurogenic deficits to those of wild-type mouse levels. AAV2/1-CD200 reduced diffuse Aβ plaques in the hippocampal region by 65.5% compared to AAV2/1-GFP-injected APP mice, but did not alter thioflavin-S-positive compact plaques as measured by protein and immunohistochemical assays. In vitro studies demonstrated that CD200-stimulated microglia co-cultured in transwells increased differentiation and complexity of neural stem cells. CD200 also directly enhanced Aβ phagocytosis by microglia. CD200 enhanced expression of the adaptor protein TYRO protein tyrosine kinase binding protein (TYROBP), suggesting this may be the mechanism by which CD200 enhances phagocytosis of Aβ. Overall, the data presented here indicate that CD200 is a plausible therapeutic agent in patients with AD to enhance neural differentiation and microglial-mediated clearance of Aβ.
17

Delineating the Role of c-Myc in Development and Propagation of Hypertrophic Cardiomyopathy

Wolfram, Julie Ann 31 January 2012 (has links)
No description available.
18

PHARMACEUTICALLY ENGINEERED NANOPARTICLES FOR ENHANCING IMMUNE RESPONSES TO HIV-1 TAT AND GAG p24 PROTEINS

Patel, Jigna D. 01 January 2006 (has links)
These studies were aimed at investigating the potential application of nanoparticles engineered from oil-in-water microemulsion precursors for enhancing immune responses to HIV-1 Tat and Gag p24 proteins. Both of the HIV-1 proteins have been reported to be critical in the virus life cycle and are being evaluated in clinical trials as vaccine candidates. Anionic nanoparticles were prepared using emulsifying wax as the oil phase and Brij 78 and sodium dodecyl sulfate as the surfactants. The resulting nanoparticles were coated with Tat and were demonstrated to produce superior immune responses after administration to BALB/c mice compared to Tat adjuvanted with Alum. Similarly, cationic nanoparticles were prepared using emulsifying wax and Brij 78 and cetyl trimethyl ammonium bromide as the surfactants. The cationic nanoparticles were investigated for delivery of immunostimulatory adjuvants, namely three Toll-like receptor ligands, for obtaining synergistic enhancements in immune responses to a model antigen, Ovalbumin (OVA). In vitro and in vivo studies were carried out to elucidate possible mechanisms by which nanoparticles may result in enhancements in immune responses. In vitro studies were carried out to evaluate the uptake of nanoparticles into dendritic cells and to assess the release of pro-inflammatory cytokines from dendritic cells in the presence of nanoparicles. In vivo studies were carried out using a MHC class I restricted transgenic mouse model to investigate the potential for nanoparticles coated with OVA to enhance presentation of the protein to CD8+ T cells compared to OVA alone. Finally, the preparation of nanoparticles with a low amount of surface chelated nickel for high affinity binding to histidine-tagged (his-tag) proteins was investigated. It was hypothesized that this strengthened interaction of his-tag protein to the nickel chelated nanoparticles (Ni-NPs) would result in a greater uptake of antigen in vivo; therefore, enhanced immune responses compared to protein bound to anionic nanoparticles. In vivo evaluation of his-tag HIV-1 Gag p24 bound to Ni-NPs resulted in enhanced immune responses compared to protein either adjuvanted with Alum or coated on the surface of nanoparticles.
19

FUNCTIONAL DIFFERENCES BETWEEN H-RAS AND K-RAS IN TRANSGENIC MOUSE TUMORS

Agarwal, Amit Balkrishna 01 January 2007 (has links)
The ras genes, including Harvey ras (H-ras) and Kirsten ras (K-ras), were among the first oncogenes discovered, and are the most commonly mutated oncogenes in human cancer. The H-ras and K-ras proteins are 85% identical and share considerable functional overlap. However, there is increasing evidence for functional differences between the two proteins that may impart different properties to tumors arising from mutations in these two genes. To study the functional differences between H-ras and K-ras in an in vivo setting, we used two different transgenic mouse tumor models, MMTV-H-ras and MMTV-K-ras mice. The MMTV-H-ras mice were originally developed in Dr. Leder's lab and have been well characterized with regard to tumor properties. We created a similar line of transgenic mice expressing mutant K-ras (G12V) under the control of the MMTV promoter. Female mice of both lines develop primarily mammary tumors. We compared differences between the H-ras and K-ras lines with regard to age of tumor onset, rate of tumor growth, and rates of tumor proliferation and apoptosis. The tumors were also characterized by microarray analysis to look for genes that are differentially expressed in the two tumor types. Finally, the response of tumors to two common chemotherapeutic agents, doxorubicin and taxol, was also measured. We found that tumors in the MMTV-H-ras and MMTV-K-ras mice were similar with respect to several tumor properties, including age of onset, histopathology, and proliferation and apoptotic indices. While tumors from mice of these two genotypes clustered separately in an unsupervised analysis of gene expression profiles, the differentially expressed genes did not fall within any well-defined signaling pathways. However, drug studies indicated differences in response to doxorubicin between the two isoforms, with H-ras tumors responding better than K-ras tumors. In conclusion, our studies point to specific differences between H-ras and K-ras that may represent novel signaling pathways not currently known to be regulated by Ras. In spite of the few differences in properties of tumors arising from H-ras and K-ras mutation, there might be differences in response to chemotherapeutic agents that could have clinical significance.
20

Analysis of a p53 Gain-of-function Mutation in Transgenic Mouse Salivary Tumors

Jiang, Dadi 01 January 2007 (has links)
p53 is an important tumor suppressor gene which is mutated in ~50% of all human cancers. Some of the p53 mutants appear to have acquired novel functions beyond merely losing wild-type functions. To investigate these gain-of-function effects in vivo, we interbred MMTV-v-Ha-ras transgenic mice to either p53-/- knock-out mice or p53R172H/+ knock-in mice to generate mice of three different genotypes: MMTV-ras, MMTV-ras/p53-/-, and MMTV-ras/p53R172H/R172H. Male mice of each of these genotypes were characterized with regard to age of salivary tumor onset and the tumors were characterized with regard to mean growth rates, proliferation fraction, apoptotic levels, and tumor histopathology, as well as responses to doxorubicin treatment. Microarray analysis was also performed to profile gene expression.The MMTV-ras/p53-/- and MMTV-ras/p53R172H/R172H mice display similar properties in age of tumor onset, tumor growth rates, and tumor histopathology, as well as response to doxorubicin. However, a subset of genes show differential expression between the two groups of tumor , and do not appear to be regulated by wild-type p53. At the same time, the MMTV-ras/p53R172H/R172H and MMTV-ras/p53+/+ tumors share similar expression levels of a group of genes that are differentially expressed in the MMTV-ras/p53-/- tumors. Thus, the gain-of-function effects may be caused in part by perturbed regulation of genes not normally regulated by wild-type p53, in addition to imbalances in the regulation of normal p53 target genes.

Page generated in 0.056 seconds