• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of gene expression of the 25-Hydroxyvitamin D 1α-Hydroxylase (CYP27B1) promoter : study of a transgenic mouse model.

Hendrix, Ivanka January 2004 (has links)
Title page, table of contents and abstract only. The complete thesis in print form is available from the University of Adelaide Library. / The enzyme 25-hydroxyvitamin D la-hydroxylase or CYP27Bl is the key enzyme in the two-step activation process by which vitamin D is converted to its biologically active form 1,25-dihydroxyvitamin D (1,25D). The actions of a number of regulators on the renal CYP27B1 enzyme activity have been recognized for some years, although the underlying molecular mechanisms remain largely unknown and the DNA regions involved in the in vivo regulation of gene expression by these factors have not been delineated as yet. In order to identify the regulatory regions through which these factors control CYP27B1 expression in the kidney in vivo and to study the spatial and temporal expression of the CYP27B1 gene during development, a transgenic mouse model was established. This model was developed using pro-nuclear injection of a DNA construct containing the firefly luciferase reporter gene under the control of the 1541 bp region of the human CYP27B1 promoter. Following pro-nuclear injection, three transgenic founders were obtained and bred to establish three independent transgenic lines. In all three lines, a very similar expression pattern of the luciferase reporter gene was detected. High levels of luciferase activity were detected in the kidney, brain, testis, skin and bone. Lower levels of luciferase activity were detected in heart, lung, liver, distal small intestine, skeletal muscle and spleen extracts. No reporter gene expression could be detected in the proximal small intestine. This animal model was used to identify the ability of the 1541 bp promoter region of the CYP27B1 gene to respond in the kidney to a number of physiological challenges including dietary calcium, vitamin D and the immunomodulator LPS. In addition, the temporal expression of the reporter gene was studied by sacrificing animals at 6 different time points (2, 4, 6, 8, 12 and 64 weeks of age). The functionality of the CYP27B1 promoter was verified by comparing the regulation of the expression of the reporter gene with that of the endogenous CYP27B1 gene. The expression of endogenous CYP27B1 mRNA levels was therefore determined using Real-Time RT-PCR. The expression of the reporter gene and the endogenous CYP27B1 mRNA levels in the kidney were increased during early development (2 week old animals) and fell with increasing age. Reporter gene expression and CYP27BI mRNA levels were down-regulated in response to increasing amounts of dietary calcium in a dosedependent manner. Vitamin D-deficiency resulted in an increase in both the reporter gene and CYP27B1 expression. However, the increase in CYP27B1 mRNA levels was substantially higher than the increase in reporter gene expression, suggesting that other regulatory elements are required to maximize the effect of vitamin D-deficiency. LPS administration did not affect the expression of either luciferase or the endogenous CYP27B1 gene in the kidney. Immunohistochemistry was used to identify the cell-specific location of the luciferase and the endogenous CYP27B1 protein in the kidney in kidney sections of vitamin D-deficient animals. Both luciferase protein and the endogenous CYP27B1 protein were identified in the proximal tubular cells of the kidney. The regulation of the expression of the reporter gene was also studied in the transgenic mouse model in a number of extra-renal tissues that have been shown to express CYP27Bl and to be responsive to 1,25D. These tissues include heart, liver, lung, femora, bone marrow, skeletal muscle, testis, skin, brain, spleen and proximal and distal small intestine. Although in most tissues, the expression of luciferase was highest in the 2 week old animals and fell with increasing age, in the testis, the expression levels were low in the developing animals and increased with increasing age. No physiological significant effects were detected in any of the extra-renal tissues examined in response to dietary calcium and vitamin D, suggesting that these factors control CYP27Bl expression in a kidney-specific manner. In addition, no physiologically significant effect of the LPS administration could be detected in these tissues. Future studies employing transgenic animals which express transgenic constructs containing both the CYP27Bl promoter and upstream and/or intronic sequences are required to identify the factors that regulate CYP27Bl expression in the different tissues and to delineate the DNA regulatory regions through which these factors exert their effects in vivo. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1140412 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2004
2

Characterization of Liver Damage Mechanisms Induced by Hepatitis C Virus

Soare, Catalina P. 01 November 2011 (has links)
Hepatitis C Virus (HCV) is one of the most important causes of chronic liver disease, affecting more than 170 million people worldwide. The mechanisms of hepatitis C pathogenesis are unknown. Viral cytotoxicity and immune mediated mechanisms might play an important role in its pathogenesis. HCV infection and alcohol abuse frequently coexist and together lead to more rapid progression of liver disease, increasing the incidence and prevalence of cirrhosis and hepatocellular carcinoma. The cytopathic effect of HCV proteins, especially the core, E1 and E2 structural proteins, which induce liver steatosis, oxidative stress and cell transformation may be amplified by alcohol abuse. The purpose of this study was to characterize the liver damage mechanisms induced by HCV structural proteins and alcohol and to determine the potential molecular mechanism(s) that may promote chronic, progressive liver damage. A transgenic mouse model expressing HCV core, E1 and E2 was used to investigate whether alcohol increased HCV RNA expression. Real-time RT-PCR analysis of genes involved in lipid metabolism and transport confirmed their abnormal expression in the alcohol-fed transgenic mice. In addition, light and electron microscopy analysis were performed on liver tissues of transgenic mice on an alcoholic diet versus those on a normal diet, in order to identify histological changes. The severe hepatopathy in HCV transgenic mice was exacerbated by alcohol. Mitochondria and endoplasmic reticulum had severe abnormalities in the electron microscopy analysis. The second part of this study focused on adaptive immune responses, which may also play an important role in HCV pathogenesis. I focused my analysis on dendritic cells (DC), which have been the main suspects to explain immune impairment in HCV infection. Their powerful antigen-presenting function allows them to stimulate the antiviral response of CD4+ and CD8+ T cells, the effector cells of the immune system. This unique function of the DC makes them possible targets for immune evasion by the Hepatitis C virus. In this study, DCs were generated from mouse bone marrow cells. I investigated their maturation capacity in the presence of structural proteins of HCV. The impact of HCV core/E1/E2 polyprotein on DCs cytokine expression and ability to activate T-cell lymphocytes was also analyzed. A dysfunctional CD4 T cell response was observed after exposure of DCs to core/E1/E2 polyprotein, indicating inefficient CD4 priming, which might lead to chronic HCV infection in humans. The presence of the core/E1/E2 polyprotein reduced the DC maturation capacity and the expression of certain cytokines (IL-12, IFNg, IL-6, MCP-1) important for stimulation and chemotaxis of T cells and other immune cells. My studies contribute to the understanding of HCV pathogenesis and may have implications to the development of better therapies for HCV infection.
3

Characterization of Liver Damage Mechanisms Induced by Hepatitis C Virus

Soare, Catalina P. 01 November 2011 (has links)
Hepatitis C Virus (HCV) is one of the most important causes of chronic liver disease, affecting more than 170 million people worldwide. The mechanisms of hepatitis C pathogenesis are unknown. Viral cytotoxicity and immune mediated mechanisms might play an important role in its pathogenesis. HCV infection and alcohol abuse frequently coexist and together lead to more rapid progression of liver disease, increasing the incidence and prevalence of cirrhosis and hepatocellular carcinoma. The cytopathic effect of HCV proteins, especially the core, E1 and E2 structural proteins, which induce liver steatosis, oxidative stress and cell transformation may be amplified by alcohol abuse. The purpose of this study was to characterize the liver damage mechanisms induced by HCV structural proteins and alcohol and to determine the potential molecular mechanism(s) that may promote chronic, progressive liver damage. A transgenic mouse model expressing HCV core, E1 and E2 was used to investigate whether alcohol increased HCV RNA expression. Real-time RT-PCR analysis of genes involved in lipid metabolism and transport confirmed their abnormal expression in the alcohol-fed transgenic mice. In addition, light and electron microscopy analysis were performed on liver tissues of transgenic mice on an alcoholic diet versus those on a normal diet, in order to identify histological changes. The severe hepatopathy in HCV transgenic mice was exacerbated by alcohol. Mitochondria and endoplasmic reticulum had severe abnormalities in the electron microscopy analysis. The second part of this study focused on adaptive immune responses, which may also play an important role in HCV pathogenesis. I focused my analysis on dendritic cells (DC), which have been the main suspects to explain immune impairment in HCV infection. Their powerful antigen-presenting function allows them to stimulate the antiviral response of CD4+ and CD8+ T cells, the effector cells of the immune system. This unique function of the DC makes them possible targets for immune evasion by the Hepatitis C virus. In this study, DCs were generated from mouse bone marrow cells. I investigated their maturation capacity in the presence of structural proteins of HCV. The impact of HCV core/E1/E2 polyprotein on DCs cytokine expression and ability to activate T-cell lymphocytes was also analyzed. A dysfunctional CD4 T cell response was observed after exposure of DCs to core/E1/E2 polyprotein, indicating inefficient CD4 priming, which might lead to chronic HCV infection in humans. The presence of the core/E1/E2 polyprotein reduced the DC maturation capacity and the expression of certain cytokines (IL-12, IFNg, IL-6, MCP-1) important for stimulation and chemotaxis of T cells and other immune cells. My studies contribute to the understanding of HCV pathogenesis and may have implications to the development of better therapies for HCV infection.
4

Characterization of Liver Damage Mechanisms Induced by Hepatitis C Virus

Soare, Catalina P. 01 November 2011 (has links)
Hepatitis C Virus (HCV) is one of the most important causes of chronic liver disease, affecting more than 170 million people worldwide. The mechanisms of hepatitis C pathogenesis are unknown. Viral cytotoxicity and immune mediated mechanisms might play an important role in its pathogenesis. HCV infection and alcohol abuse frequently coexist and together lead to more rapid progression of liver disease, increasing the incidence and prevalence of cirrhosis and hepatocellular carcinoma. The cytopathic effect of HCV proteins, especially the core, E1 and E2 structural proteins, which induce liver steatosis, oxidative stress and cell transformation may be amplified by alcohol abuse. The purpose of this study was to characterize the liver damage mechanisms induced by HCV structural proteins and alcohol and to determine the potential molecular mechanism(s) that may promote chronic, progressive liver damage. A transgenic mouse model expressing HCV core, E1 and E2 was used to investigate whether alcohol increased HCV RNA expression. Real-time RT-PCR analysis of genes involved in lipid metabolism and transport confirmed their abnormal expression in the alcohol-fed transgenic mice. In addition, light and electron microscopy analysis were performed on liver tissues of transgenic mice on an alcoholic diet versus those on a normal diet, in order to identify histological changes. The severe hepatopathy in HCV transgenic mice was exacerbated by alcohol. Mitochondria and endoplasmic reticulum had severe abnormalities in the electron microscopy analysis. The second part of this study focused on adaptive immune responses, which may also play an important role in HCV pathogenesis. I focused my analysis on dendritic cells (DC), which have been the main suspects to explain immune impairment in HCV infection. Their powerful antigen-presenting function allows them to stimulate the antiviral response of CD4+ and CD8+ T cells, the effector cells of the immune system. This unique function of the DC makes them possible targets for immune evasion by the Hepatitis C virus. In this study, DCs were generated from mouse bone marrow cells. I investigated their maturation capacity in the presence of structural proteins of HCV. The impact of HCV core/E1/E2 polyprotein on DCs cytokine expression and ability to activate T-cell lymphocytes was also analyzed. A dysfunctional CD4 T cell response was observed after exposure of DCs to core/E1/E2 polyprotein, indicating inefficient CD4 priming, which might lead to chronic HCV infection in humans. The presence of the core/E1/E2 polyprotein reduced the DC maturation capacity and the expression of certain cytokines (IL-12, IFNg, IL-6, MCP-1) important for stimulation and chemotaxis of T cells and other immune cells. My studies contribute to the understanding of HCV pathogenesis and may have implications to the development of better therapies for HCV infection.
5

Characterization of Liver Damage Mechanisms Induced by Hepatitis C Virus

Soare, Catalina P. January 2011 (has links)
Hepatitis C Virus (HCV) is one of the most important causes of chronic liver disease, affecting more than 170 million people worldwide. The mechanisms of hepatitis C pathogenesis are unknown. Viral cytotoxicity and immune mediated mechanisms might play an important role in its pathogenesis. HCV infection and alcohol abuse frequently coexist and together lead to more rapid progression of liver disease, increasing the incidence and prevalence of cirrhosis and hepatocellular carcinoma. The cytopathic effect of HCV proteins, especially the core, E1 and E2 structural proteins, which induce liver steatosis, oxidative stress and cell transformation may be amplified by alcohol abuse. The purpose of this study was to characterize the liver damage mechanisms induced by HCV structural proteins and alcohol and to determine the potential molecular mechanism(s) that may promote chronic, progressive liver damage. A transgenic mouse model expressing HCV core, E1 and E2 was used to investigate whether alcohol increased HCV RNA expression. Real-time RT-PCR analysis of genes involved in lipid metabolism and transport confirmed their abnormal expression in the alcohol-fed transgenic mice. In addition, light and electron microscopy analysis were performed on liver tissues of transgenic mice on an alcoholic diet versus those on a normal diet, in order to identify histological changes. The severe hepatopathy in HCV transgenic mice was exacerbated by alcohol. Mitochondria and endoplasmic reticulum had severe abnormalities in the electron microscopy analysis. The second part of this study focused on adaptive immune responses, which may also play an important role in HCV pathogenesis. I focused my analysis on dendritic cells (DC), which have been the main suspects to explain immune impairment in HCV infection. Their powerful antigen-presenting function allows them to stimulate the antiviral response of CD4+ and CD8+ T cells, the effector cells of the immune system. This unique function of the DC makes them possible targets for immune evasion by the Hepatitis C virus. In this study, DCs were generated from mouse bone marrow cells. I investigated their maturation capacity in the presence of structural proteins of HCV. The impact of HCV core/E1/E2 polyprotein on DCs cytokine expression and ability to activate T-cell lymphocytes was also analyzed. A dysfunctional CD4 T cell response was observed after exposure of DCs to core/E1/E2 polyprotein, indicating inefficient CD4 priming, which might lead to chronic HCV infection in humans. The presence of the core/E1/E2 polyprotein reduced the DC maturation capacity and the expression of certain cytokines (IL-12, IFNg, IL-6, MCP-1) important for stimulation and chemotaxis of T cells and other immune cells. My studies contribute to the understanding of HCV pathogenesis and may have implications to the development of better therapies for HCV infection.
6

B-cell Lymphoma-2 (Bcl-2) Is an Essential Regulator of Adult Hippocampal Neurogenesis

Ceizar, Maheen 19 September 2012 (has links)
Of the thousands of dividing progenitor cells (PCs) generated daily in the adult brain only a very small proportion survive to become mature neurons through the process of neurogenesis. Identification of the mechanisms that regulate cell death associated with neurogenesis would aid in harnessing the potential therapeutic value of PCs. Apoptosis, or programmed cell death, is suggested to regulate death of PCs in the adult brain as overexpression of B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, enhances the survival of new neurons. To directly assess if Bcl-2 is a regulator of apoptosis in PCs, this study examined the outcome of removal of Bcl-2 from the developing PCs in the adult mouse brain. Retroviral mediated gene transfer of Cre into adult floxed Bcl-2 mice eliminated Bcl-2 from developing PCs and resulted in the complete absence of new neurons at 30 days post viral injection. Similarly, Bcl-2 removal through the use of nestin-induced conditional knockout mice resulted in reduced number of mature neurons. The function of Bcl-2 in the PCs was also dependent on Bcl-2-associated X (BAX) protein, as demonstrated by an increase in new neurons formed following viral-mediated removal of Bcl-2 in BAX knockout mice. Together these findings demonstrate that Bcl-2 is an essential regulator of neurogenesis in the adult hippocampus.
7

Immunopathogenesis of cortical demyelination in Multiple Sclerosis

Lagumersindez Denis, Nielsen 09 November 2015 (has links)
No description available.
8

Monocytes as Gene Therapy Vectors for the Treatment of Alzheimer’s Disease

Lebson, Lori Ann 07 November 2008 (has links)
The accumulation of amyloid-ß; protein (Aß) in Alzheimer's disease (AD) is a well known pathological event. Decreasing the production or increasing the degradation of Aß; is therefore thought to serve as a potential therapeutic intervention in AD. Recent in vitro and in vivo studies have suggested that certain proteases may be involved in the catabolism of Aß; and defects in the degradation of Aß; could contribute to AD disease progression. Studies implicating the homing of monocytes to regions of CNS damage have led to the idea that it may be possible to use genetically modified monocytes to carry exogenous genes of interest into the brain or other organs for the purposes of gene therapy. To determine the time course of monocyte recruitment into the brain during the neurodegenerative damage characteristic of Alzheimer's disease, we used transplanted GFP labeled bone marrow monocytes to characterize the kinetics that peripheral monocytes display once injected into the circulation. We determined the half life of bone marrow derived monocytes after one injection into the peripheral circulation, and found this time to be 1.5 hours post injection. We also examined the effects of the APP+PS1 transgene on the recruitment of peripheral monocytes and showed that these cells are actively recruited to the brains in AD transgenic mouse models compared to non transgenic mice. As an approach to increase expression of NEP in a transgenic mouse model of AD, we developed an ex vivo gene therapy method utilizing bone marrow monocytes from GFP mice. These monocytes were transfected with a NEP construct designed to express either a secreted form of NEP or a form which lacks any enzyme activity. Monocytes were administered through a microvascular port twice a week for two months and we observed recruitment of bone marrow-derived monocytes into the CNS. In addition, we found significant reductions in both Aß and Congo red staining in the NEP-S injected mice only. These studies show that putting monocytes together with an amyloid degrading enzyme such as neprilysin offers a powerful novel therapeutic tool for the treatment of AD.
9

Role of the Prader-Willi syndrome proteins necdin and Magel2 in the nervous system

Tennese, Alysa 11 1900 (has links)
Prader-Willi syndrome (PWS) is a rare, neurodevelopmental disorder with multiple features caused by hypothalamic deficiency, including infantile failure to thrive, hyperphagia leading to obesity, growth hormone deficiency, hypogonadism, and central adrenal insufficiency. Other features of PWS including global developmental delay, hypotonia, pain insensitivity, gastrointestinal dysfunction, and psychiatric disorders are caused by deficits in other regions of the nervous system. PWS is caused by the loss of a subset of paternally-expressed genes on chromosome 15, which includes NDN and MAGEL2. Necdin and Magel2 are both members of the melanoma antigen (MAGE) family of proteins and are expressed throughout development, particularly in the nervous system. This thesis describes experiments that examine the loss of function of necdin and Magel2 in mice and their potential roles in the pathogenesis of PWS. Targeted inactivation of Ndn and Magel2 in mice has aided in determining how loss of function of these proteins affects the development and function of the nervous system. Loss of necdin causes reduced axonal outgrowth and neuronal differentiation in the central and peripheral sensory nervous systems. I examined the autonomic nervous system in Ndn-null embryos and identified a defect in the migration of the most rostral sympathetic chain ganglion and consequently increased neuronal cell death and reduced innervation of target tissues supplied by this ganglion. Reduced axonal outgrowth was observed throughout the sympathetic nervous system in Ndn-null embryos although no gross deficits in the parasympathetic and enteric nervous systems were identified. Loss of Magel2 causes reduced fertility and abnormal circadian rhythm patterns in mice. I further identified an altered response to stress, a delayed response to insulin-induced hypoglycemia, a reduced stimulated growth hormone response, and lower thyroid hormone levels in Magel2-null mice, indicative of deficits in multiple hypothalamic-pituitary axes. The findings presented in this thesis support a role for necdin and Magel2 in the development and function of the nervous system. The data also indicates that these MAGE proteins play a key role in multiple features of PWS, including endocrine deficiencies and autonomic dysfunction
10

B-cell Lymphoma-2 (Bcl-2) Is an Essential Regulator of Adult Hippocampal Neurogenesis

Ceizar, Maheen 19 September 2012 (has links)
Of the thousands of dividing progenitor cells (PCs) generated daily in the adult brain only a very small proportion survive to become mature neurons through the process of neurogenesis. Identification of the mechanisms that regulate cell death associated with neurogenesis would aid in harnessing the potential therapeutic value of PCs. Apoptosis, or programmed cell death, is suggested to regulate death of PCs in the adult brain as overexpression of B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, enhances the survival of new neurons. To directly assess if Bcl-2 is a regulator of apoptosis in PCs, this study examined the outcome of removal of Bcl-2 from the developing PCs in the adult mouse brain. Retroviral mediated gene transfer of Cre into adult floxed Bcl-2 mice eliminated Bcl-2 from developing PCs and resulted in the complete absence of new neurons at 30 days post viral injection. Similarly, Bcl-2 removal through the use of nestin-induced conditional knockout mice resulted in reduced number of mature neurons. The function of Bcl-2 in the PCs was also dependent on Bcl-2-associated X (BAX) protein, as demonstrated by an increase in new neurons formed following viral-mediated removal of Bcl-2 in BAX knockout mice. Together these findings demonstrate that Bcl-2 is an essential regulator of neurogenesis in the adult hippocampus.

Page generated in 0.1115 seconds